
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2013

Vehicle Minimization for the Multimodal Pickup and Delivery Vehicle Minimization for the Multimodal Pickup and Delivery

Problem with Time Windows Problem with Time Windows

Benjamin A . Clapp

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons, and the Operations and Supply Chain Management

Commons

Recommended Citation Recommended Citation
Clapp, Benjamin A ., "Vehicle Minimization for the Multimodal Pickup and Delivery Problem with Time
Windows" (2013). Theses and Dissertations. 961.
https://scholar.afit.edu/etd/961

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholar.afit.edu%2Fetd%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholar.afit.edu%2Fetd%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/961?utm_source=scholar.afit.edu%2Fetd%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND

DELIVERY PROBLEM WITH TIME WINDOWS

THESIS

Benjamin Clapp

AFIT-ENS-13-M-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

www.manaraa.com

AFIT-ENS-13-M-03

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Benjamin A. Clapp, BS

March 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

www.manaraa.com

AFIT-ENS-13-M-03

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

Benjamin Clapp

Approved:

___________________________ _________

Jeffery Weir, PhD (Advisor) Date

___________________________ _________

Raymond Hill, PhD (Reader) Date

Accepted:

___________________________ _________

H. Ries, PhD Date

 Dean, Graduate School of Engineering and Management

www.manaraa.com

iv

AFIT-ENS-13-M-03

Abstract

This thesis develops an algorithm to address a special case of the Vehicle Routing

Problem. The algorithm developed is decompositional with two components. The first

component is based upon Dijkstra’s algorithm and is used to simplify the routing

component of processing. The second component is based upon the priority rule

heuristics used in scheduling job shop problems for parallel machines.

The VRP solved is subject to time windows and capacity constraints on vehicles

and offloading. The VRP is multimodal. The objective function for the problem is the

sum of all vehicles used, multiplied by their respective cost modifiers. Shipments are

required to travel entirely on a single mode.

The data input consists of a network and shipping requirements. The network is

subjected to Dijkstra’s. Dijkstra’s returns a simplified network of shortest paths. This

simplified network, along with the shipping requirements, is subjected to the scheduling

heuristic. The heuristic assigns as many of the shipments as possible away from the

currently minimizing mode. This determines which shipments must be processed on the

minimizing mode. It determines how many vehicles are required to carry those

shipments. Finally, any remaining capacity is assigned. This process is repeated for each

mode.

www.manaraa.com

v

Acknowledgements

 I would like to thank Dr. Weir for guidance throughout the development of this

thesis and especially for his aid in paring away what was unimportant and retaining what

was essential in the problem. I would also like to thank my sponsor, David Longhorn, for

providing the problem and for his insight into it.

I would also like to thank my family and my wife, whose support helped me

through this process. Finally, I would like to thank the Air Force Institute of Technology

and Transportation Command, for making this research possible.

www.manaraa.com

vi

Table of Contents

Page

Abstract .. iv

Acknowledgements ... v

I. Introduction ... 1

The General Problem .. 1

Algorithm Overview ... 3

Scope of Research ... 4

Issues, Needs, and Limitations .. 5

Research Organization .. 6

II. Literature Review... 7

Chapter Overview ... 7

Vehicle Routing Problem Overview ... 8

Dial-A-Ride Problem Summary .. 8

Dial-A-Ride Problem Solution Techniques .. 10

Dial-A-Ride Discussion Summary .. 13

Q-Machine Scheduling Summary ... 14

Q-Machine Scheduling Heuristics .. 15

Q-Machine Scheduling Summary ... 17

Pragmatic Instance Summary .. 18

Chapter Review ... 20

III. Methodology .. 21

Broad Analysis of the Algorithm .. 21

Data Inputs .. 21

Dijkstra’s Algorithm ... 22

Scheduling Heuristic Overview .. 23

Scheduling Heuristic Inputs .. 24

Deadline Assignment .. 25

Infrastructure Assignment ... 26

Vehicle Assignment .. 28

www.manaraa.com

vii

Correction Step .. 31

IV. Results and Analysis .. 32

Simple Test Case ... 32

Modified Simple Case ... 34

Multinodal, Multimodal Demonstration Case ... 37

Multimodal Large Scale Case ... 41

V. Conclusions .. 42

Summary ... 42

Future Research ... 43

Appendix A: Shortest Path Network Generator.. 44

Appendix B: Ordered Scheduling Heuristic ... 48

Bibliography ... 76

www.manaraa.com

viii

List of Figures

Figure Page

1. Overview of Algorithm…………………………………………………………………3

2. Dijkstra’s Algorithm…………………………………………………………………..22

3. Scheduling Heuristic Overview…...23

www.manaraa.com

ix

List of Tables

Table Page

1. Simple Test Case Data Input... 33

2. Simple Test Case Results Output .. 33

3. Simple Test Case Vehicle Schedule ... 34

4. Modified Simple Case Data Input... 35

5. Modified Simple Case Vehicle Data... 35

6. Modified Simple Case Shipment Schedule... 36

7. Modified Simple Case Vehicle Schedule ... 36

8. Multimodal Simple Case Data Input... 38

9. Multimodal Simple Case Shipment Output .. 40

www.manaraa.com

1

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

I. Introduction

The General Problem

 The algorithm developed here addresses a special case of the Vehicle Routing

Problem (VRP). The VRP considered is multimodal with time constraints. It is also

subject to capacity constraints, both on individual vehicles and on offloading at each

node. This makes the problem broadly equivalent to the general formulation of the

M++RP, or multimodal multicapacitated vehicle routing problem. However, the

objective function used is based upon the total numbers of vehicles of each type used.

Consequently, the problem can also be considered to be a special case of the Fleet Size

and Mix Problem (FSMP).

 The primary issue in solving any VRP is computational complexity. This is even

more true when addressing the M++RP, or the FSMP. The computational complexity is

exacerbated by the size of the problem and by the number of options available. It is not

reduced by the constraints. In fact, the constraints may increase the computational

www.manaraa.com

2

complexity of the problem. The constraints may cause this issue by creating interference

between the shipments in their processing at specific locations or on specific vehicles.

 The FSMP has three specific issues related to computational complexity, which

substantially expand the problem. Firstly, the FSMP does not directly allow for tradeoff-

costing, either between particular days or between vehicle types. We concern ourselves

with the total number of vehicles used and not with the vehicles used on any particular

day. Because of this, vehicles can be considered ‘free’ with respect to the objective

function except if their assignment would cause more vehicles to be required. It is not

always possible to infer directly how the assignment of one vehicle might affect the

assignment of later vehicles. Because of this, the costs of assigning vehicles are generally

unavailable, directly, until the latter parts of the assignment.

 Secondly, in the FSMP, we do not know the number of vehicles available for any

given mode. This makes capacitating flow on any given mode difficult. It also makes it

difficult to determine the limitations on the number of shipments any given mode is

capable of carrying. Without knowing what a certain mode can carry, it is difficult to

determine what the other modes must carry.

 Thirdly, the FSMP generally requires multiple iterations to solve. We are seeking

the feasible solution using the fewest vehicles. The intuitive approach to this solution is

to determine a number of vehicles which is obviously sufficient. We could then reduce

the number of vehicles, checking to ensure feasibility with each reduction. This is

functional because it allows the determination of each mode’s capacity interactively with

the other modes. All methods of solution must somehow take this process into account.

www.manaraa.com

3

Generally, this means correcting an original solution, which of course requires many

solutions of the VRP for a single FSMP solution.

Algorithm Overview

 The algorithm developed in this thesis is decompositional. A diagram of the

algorithm can be seen in Figure 1. It handles the TPFDD by splitting it into two data-

components. The first data component is the network, which is processed by Dijkstra’s

algorithm. Dijkstra’s returns a simplified version of this network. The second data

component is the shipping requirements. The shipping requirements and network are then

used as inputs for the second part of the algorithm. This part of the algorithm is the

iterative scheduling heuristic. It efficiently allocates the shipments included in the

shipping requirements to vehicles associated with paths on the simplified network. This

assignment is made so as not to violate any of the constraints associated with the

network, vehicles, or shipments.

Figure 1. Overview of Algorithm

www.manaraa.com

4

 Dijkstra’s algorithm is well-researched, very fast, and very reliable. In this

instance it has only a small, conventional role. It seeks out the shortest path from each

node included in the original network to each other node included in the original network.

If we assume that the shortest paths are the best paths to use, we may use these paths in

place of a full routing algorithm. While the paths are unlikely to be ideal, they

approximate the ideal.

 The second component of the algorithm is the iterative scheduling heuristic

mentioned above. It iterates once for each mode. First, it determines the cheapest mode

which is capable of carrying each shipment. At this stage, the algorithm assumes that the

shipment is immediately loaded onto the mode on arrival, and when delivered, unloading

capacity is immediately available. After this stage, the algorithm determines whether the

number of shipments assigned to each mode is too great to be handled by the unloading

capacity of that mode. Any excess shipments are moved to a higher-cost mode.

 Finally, the number of vehicles required to carry any shipments assigned to the

most expensive mode is determined. Then, any excess capacity is used to deliver

shipments which were previously assigned to a cheaper mode. Any shipments which are

assigned to the most expensive mode are eliminated from the overall shipment list. The

process then repeats, disincluding the newly minimized mode. In the next iteration, the

reduced shipment list is used.

Scope of Research

 The purpose of this research is to develop an algorithm capable of solving a large

instance of the multi-modal FSMP. The algorithm will emphasize deadlines and arrival

www.manaraa.com

5

dates as priority constraints in its solution. It will minimize vehicles in order of cost,

ensuring that the most expensive vehicles receive priority. Each shipment will be shipped

entirely on a single mode. Real-world aspects of the problem which are included in this

solution include vehicle and offloading capacity and variation in path lengths.

Issues, Needs, and Limitations

 The research is limited by its inability to model the real world with precision.

Many constraints are applicable to the real-world problem but beyond the scope of the

algorithm. This is generally due to added computational complexity. As a consequence,

the results given by the algorithm can only provide a guide to the number of vehicles

ultimately required for any given TPFDD and network.

 A major limitation of the system as it stands is the removal of constraints

regarding which modes can carry certain shipments. Certain shipments, according to a

TPFDD, are locked into a particular transportation type. This algorithm does not allow

for such limitations, but instead assumes that all shipments can, at least theoretically, be

carried by any mode.

 Another major limitation is the lack of multimodal solutions that is apparent in the

algorithm. Due to simplifying steps taken early in processing, the algorithm cannot

address the possibility of efficient or effective multimodal solutions. However, it is likely

that such solutions can be generated by slight modifications to the final solution set, as

with a genetic algorithm or Tabu search.

www.manaraa.com

6

Research Organization

 This chapter describes the general problem and the algorithm proposed in this

research in general terms. It then continues with a discussion of the scope of the research

itself, as well as the limitations of the algorithm and the research. Chapter II describes the

background of the Vehicle Routing Problem (VRP), emphasizing the Dial-A-Ride

Problem (DARP) and the Multimodal Multicapacitated Routing Problem (M++RP) as

special cases. It continues with a discussion of solution techniques for the DARP.

Afterward, it discusses the Q-machine scheduling problem, and techniques which are

used in solving Q-machine scheduling problems. Finally, it discusses the pragmatic

instance studied in this research. Chapter III presents the algorithm in detail. It begins

with an overview of the algorithm. It continues by discussing Dijkstra’s algorithm, and its

role in the algorithm. Then it discusses the scheduling heuristic. As part of its discussion

of the scheduling heuristic, it first covers the deadline and infrastructure assignment

steps, and then covers the vehicle assignment step, ending with the correction step.

Chapter IV presents four data sets which are used to test the algorithm. The first data set

discussed is a simple data set used as a demonstration. The second data set examined

extends the first case to multiple modes. The third data set is a modification of the

second, intended to highlight the algorithm’s reactions to infeasibility. The fourth data set

is a stress test of 500 shipments, to show the speed of the algorithm. Finally, Chapter V

provides an overview of the efficacy and drawbacks of the algorithm, the conclusions of

the research, and suggestions for further research.

www.manaraa.com

7

II. Literature Review

Chapter Overview

 The problem being reviewed in this research is a special case of the Dial-A-Ride

problem, itself a special case of the Vehicle Routing Problem, the M++RP (Moccia et al,

2008) The Dial-A-Ride problem is a subset of the general pick-up and delivery problem,

as defined in Savelsbergh and Sol’s “The General Pick-up and Delivery Problem”

(Savelsbergh et al, 2005) but the pickup and delivery problem is itself a refinement of the

“Truck Dispatching Problem” originally proposed by Dantzig and Ramser in their

eponymous paper. (Dantzig, 1959)

 The Vehicle Routing Problem has received a great deal of attention over the

years, but the particular refinement being dealt with in this paper is substantially less

studied. In particular, the M++RP deals with multi-modal, multi-time constraints, and

multiple capacity constraints, in addition to the constraints more usually associated with

the VRP, but without depots. (Moccia, 2008: 2)

 The problem can, however, also be approached as a special case of the sequential

machine scheduling problem for non-homogenous machines, or the Q-machine

scheduling problem. While the problem can be viewed as such, the more interesting

applications of Q-machine techniques for this problem relate to the use of the Q-machine

methods for solving the ‘scheduling’ component of a decomposed problem, and so that is

where our study will focus.

www.manaraa.com

8

 This chapter will first review the Vehicle Routing problem solution techniques. It

emphasizes the state of exact algorithmic solutions, and the decomposition and heuristic

mixed methods for achieving large-scale near-optimal solutions. It also discusses the

difficulty of achieving a reasonably accurate solution in a short time-scale on a problem

with such great computational complexity. Then we review the techniques used in Q-

machine scheduling as approaches to the solution of the decomposed problem.

Vehicle Routing Problem Overview

 The vehicle routing problem is the problem consisting of finding an optimal route

for either one or multiple vehicles between multiple locations, each of which will

generally place a load on the vehicles, to be transported to a second location. This second

location may be the depot of the truck, in simpler problems, but is often a delivery

location. In this case, the problem becomes the Vehicle Pick-up and Delivery problem;

more specifically, the problem may be constrained to require that the pick-ups and

deliveries occur according to a certain schedule, in which case the problem becomes the

Vehicle Pick-up and Delivery Problem with Time Windows.

Dial-A-Ride Problem Summary

 The most studied problem class which closely resembles the one discussed in this

paper is known generally as the ‘Dial-A-Ride’ Problem. The Dial-A-Ride problem is a

special case of the Vehicle Pick-Up and Delivery Problem with Time Windows, with

vehicles operating from and returning to an established depot. The problem is subject to

www.manaraa.com

9

vehicle capacity constraints and constraints on the maximum amount of time a customer

may ride in the vehicle.

 The Dial-A-Ride problem differs from the studied problem in several particulars.

The first is that the Dial-A-Ride problem does not generally have to deal with

infrastructure constraints on loading or offloading of shipments. This allows the problem

to be simplified in significant ways. First, a node occupied by a vehicle’s unloading is

unusable to other vehicles from other paths. The vehicles, however, may interfere with

one another if the capacity constraints on the arcs are used to create that effect. The

second is that the Dial-A-Ride problem generally deals with homogeneous vehicles,

rather than the multimodal approach required in dealing with the studied problem. This

creates additional computational complexity, for two reasons. The first is that the various

vehicles can be traded off, one against the other, providing another aspect of complexity,

rather than simply requiring the addition of more homogeneous vehicles (as in the Dial-

A-Ride problem). The second constraint is that the path from any given node to any

other node is unique in the Dial-A-Ride problem, as generally understood, rather than

having different distances and speeds for different modes. Finally, perhaps the biggest

difference between the Dial-A-Ride problem and the problem studied here is the problem

of scale. The Dial-A-Ride problem generally deals in vehicles which are each capable of

handling multiple loads, whereas the problem studied here generally deals in loads which

will require multiple vehicles. Hence, in the Dial-A-Ride problem, the core issue is

ensuring that the vehicles waste as little travel time as possible in getting as many loads

as possible to as many locations as possible. For the studied problem, the emphasis must

be on ensuring that the correct vehicles travel to the correct locations at the correct times,

www.manaraa.com

10

so as to prevent conflicts, and most importantly ship them efficiently and cheaply.

Finally, the Dial-A-Ride problem is often solved for a single vehicle, rather than for

multiple vehicles. While the Dial-A-Ride problem can be extended easily from a single-

vehicle technique to a multi-vehicle solution under many circumstances, the particulars of

the M++RP make it ineffective to extend from a single vehicle solution to multi-vehicles,

especially since the particular problem being studied has as one of its primary objective

function the use of minimum numbers of vehicles of each type.

Dial-A-Ride Problem Solution Techniques

The Dial-A-Ride problem is computationally complex, but also very fragile. The

number of variables involved means that the cost of accurate solutions to large-scale

problems is often prohibitively high, and instead heuristic models must be used.

Nonetheless, exact solutions can and have been found for smaller problems. There has

also been significant research into the extension of exact solution techniques for problems

after decomposition or alteration. However, the most interesting part of these techniques,

for our purposes, is the development of decomposition and simplifying techniques to be

used in conjunction with heuristics. For the Dial-A-Ride problem, it is often possible to

simplify the problem to the point where an exact solution to the problem becomes

feasible, even if the problem loses some fidelity in the process; for the M++RP problem,

and more specifically, for the pragmatic instance of the M++RP problem being studied in

this paper, simple decomposition will not result in an exactly solvable set of problems.

In 2004, Lu and Dessouky demonstrated a method for efficient generation of exact

solutions to the Dial-A-Ride problem. The method was reliant upon an integer

www.manaraa.com

11

programming formulation of the problem, which was then solved using a simple branch

and bound technique. It solved a problem consisting of 5 vehicles and 17 customers in

less than three hours. This demonstrates the complexity of the problem, since using only

5 vehicles and 17 customers generated that level of computational demand. The

advantage of Lu and Dessouky’s innovation was that it added a level of softness to

calculations regarding time and capacity constraints; however, even with these significant

changes to the fundamental paradigm, the algorithm produced a relatively time-costly

solution to a relatively small problem. (Lu et al, 2004)

 Psaraftis (Psaraftis et al, 1980, 1983) demonstrated an exact algorithm for the

solution of the Dial-A-Ride problem in Transportation Science, dealing with multiple

vehicles. His technique provides an exact solution, using a dynamic programming

algorithm, which efficiently and effectively calculated the best method for dispatching

the vehicles, including route and schedule. Originally, Psaraftis developed the technique

for a fairly simple variant, involving only one vehicle, but it was eventually extended to

fairly complicated multi-vehicle variants, including time constraints. The downside of

Psaraftis’ approach is that it only optimizes with respect to total distance travelled. While

total distance travelled is of a certain commercial interest, it is effectively irrelevant to

our particular problem because of the scaling issue. In our problem, distance travelled is a

concern secondary to our primary goal- as we know, ultimately, that our vehicles must

travel from pickup to delivery, and then to pickup, rather than the interchanging sequence

possible in the generic Dial-A-Ride problem. Equally, Psaraftis’ solution does not

address the problem of total vehicle number, which is what our algorithm is ultimately

designed to address.

www.manaraa.com

12

 More useful to us in this instance is the generation of large-scale solutions to the

Dial-A-Ride problem, which generally involves a heuristic approach. In most cases, the

approach consists of a simplifying step, followed by an algorithm which approximates

solutions to the reduced problem. In simpler cases, the problem is simply reduced directly

using an analytical approach as in the generation of lower and upper bounds, and then

solved exactly, or very closely. In large scale cases, the problem is decomposed and then

approached with a heuristic technique, which provides a lower-quality but equally lower-

cost solution to the problem, and is often the only feasible approach to such a problem.

 Baldacci et al (Baldacci, 2011) begin by generating a specialized integer

formulation of the problem, and then the dual of that form. They then use two heuristics

in conjunction to achieve a near-optimal resolution of the dual, which in turn they use to

determine which paths meet certain lower-bound and upper-bound criteria. They then

remove all paths which are outside these bounds, and solve the reduced problem using an

integer programming technique, or if the problem remains too large, attempt to resolve

the size disparity using branch-and-bound techniques.

Sexton et al (Sexton, 1985) relied on Bender’s decomposition, separating the problem

into a ‘routing’ component and a ‘scheduling’ component, and then solving with a

heuristic. This technique is very efficient for the resolution of the Dial-a-Ride problem,

because the paths are effectively independent of scheduling. If one can determine which

paths are most efficient, then the problem should nearly always solve optimally subject to

those paths, which allows for a drastic reduction in the complexity of the problem.

 While these decompositional techniques are effective in resolving some of the

computational complexity of the problem, the decomposed problems remain very

www.manaraa.com

13

complex. Even after decomposition of the problem, we are left with a routing component

equivalent to solving the shortest path problem for each of the customers, and a

scheduling problem for parallel machines. While this technique is reasonable for

resolving a problem involving only a few nodes, arcs, customers, and vehicles, handling

the problem becomes substantially more difficult at larger scales.

 An approach to multi-modality for a flexible number of vehicles was developed

by Moccia et al (Moccia, 2008), and focused upon the use of column generation

heuristics. In this case, the formulation of the problem used ‘virtual networks’ to

represent multimodal shipment transfers, developing false links with associated cost

functions and time costs to represent the price of transferring from one mode to another at

a given linkage. This methodology results in a reasonable solution for relatively large

variants of the VRP. However, the algorithm used in the paper could only handle a

relatively small system, though with great fidelity.

Dial-A-Ride Discussion Summary

 Solutions to the Dial-A-Ride problem are very rarely exact, depending instead on

heuristic algorithms, often combined with decomposition, to solve even relatively simple

problems. This is partly due to the limitations imposed by integer programming

formulation, which the majority of the techniques use as a beginning for their solution.

Any integer programming formulation must address tens of thousands, or even hundreds

of thousands of variables, addressing which path, if any, each vehicle must be on at

which hour of which day, carrying what load. By extension, almost any solution to a

large-scale Dial-A-Ride problem relies on a simplifying step, followed by powerful

www.manaraa.com

14

heuristics- and even so, will generally provide only a relatively slow solution to a

relatively small problem.

 For more details on the history of methodologies for studying the Vehicle Routing

Problem, readers are recommended to Fifty Years of Vehicle Routing (Laporte, 2009) in

the 43rd issue of Transportation Science.

Q-Machine Scheduling Summary

 One approach to the M++RP problem is to reduce it to a scheduling component

and a routing component. Once the shortest routes have been determined, the problem

can then be handled as a scheduling problem, treating each of the modes for each path as

a machine, with the vehicles treated as a global resource shared between the machines.

 The transformation of the problem to a Q-machine scheduling problem reduces

the complexity of scheduling significantly, but we are left with a computationally

demanding problem nonetheless. At this stage, integer formulation of the resulting

problem becomes more feasible and extensible to very small variants of the problem

(Wagner, 1959) but the establishment of a more effective heuristic technique remains

necessary for moderate to large scale scheduling problems. (Verma, 1999) In many cases,

the most efficient method remains a scheduling ‘rule,’ modified as necessary by

evolutionary algorithmic techniques to improve upon the initial high quality solution.

Because of the issues of interference between various shipments, even a minor shift in the

location of a single shipment can have major cascading effects on the efficacy of the

solution as a whole. This is particularly true as the chosen metric, number of vehicles

www.manaraa.com

15

used, is dependent upon peak usage across the various vehicles, not upon the total usage

of each vehicle type.

Q-Machine Scheduling Heuristics

 The simplified form of the M++RP that we are solving in this instance is

equivalent to solving , or the parallel machine scheduling problem with

machines with non-equal speeds, which are not dependent on the specific job, with setup

times, in order to minimize tardiness, and then modifying that schedule in order to

minimize m, while holding the previous objective value static. This variant of the

problem has seen significant research because of its industrial significance, and

consequently, many algorithms have been developed and applied to the problem.

However, extending an exact solution to large instances of the problem remains elusive.

 Most solutions to the formulation for large problems rely upon a prioritization

heuristic, but unfortunately no single index appropriately addresses , and even if it

did, the flexible nature of the number of machines means that while we could solve for

weighted tardiness, we would not be able to prioritize reduction of machines; priority

rules by definition assign a job to the first free machine, rather than attempting to reduce

total machine numbers.

For specifically, priority rules are difficult to implement because of the

complex nature of allocation. No specific variable, ratio, or difference can provide an

efficient and effective index in all instances. Instead, the Apparent Tardiness Cost with

Setups (ATCS) prioritization rule was developed, as a combination of all of the factors

www.manaraa.com

16

which might cause a particular job to be the priority job for a particular freed machine,

weighted dependent on the particular characteristics of the machines and jobs.

 The ATCS is one heuristic which has been developed to handle .

The ATCS calculates an index based upon the processing time, setup time, objective

weights, due date tightness and range factors, and the severity of the setup time. When a

job is completed, the job with the next highest index is assigned. The Apparent Tardiness

Cost with Setups is very efficient at handling large scale problems, and is equally very

effective at generating an optimal or near-optimal solution. However, the ATCS does not

effectively handle the in-parallel nature of the infrastructure constraints which are to be

dealt with in the current problem, simply because those constraints are not factored into

its system, and requires as part of its algorithmic structure the existence of a defined

number of vehicles. Regardless, the ATCS is a very efficient approach to the large scale

problems being handled in this instance for minimization of weighted tardiness. It is

worth noting that in the seminal paper on the topic, Lee (Lee et al, 1997) used a

corrective simulated annealing technique to improve on the value of his final solution,

relying on the ATCS rule only to generate a feasible high quality initial solution.

 Beyond the constructive algorithms designed to generate a feasible and near-

optimal solution, we find refining algorithms designed to improve on an existing

schedule. These techniques generally apply a local search heuristic, moving from one

good solution to similar solutions stepwise. Two of the most commonly used heuristics in

this role are Simulated Annealing and Tabu Search, each of which searches locally for

improvements to the currently generated schedule.

www.manaraa.com

17

 Simulated Annealing techniques depend upon a large number of solutions, which

are randomly traded for other ‘nearby’ solutions. Better solutions are generally preferred,

and as the algorithm progresses, the preference for better solutions increases, until the

algorithm is simply stepping to the local optimum. Similarly, Tabu search allows for an

algorithm to pass into infeasible territory, if the objective function can be improved by

doing so, by providing a penalty function associated with the infeasibility. As the

algorithm progresses, it increases the penalty to achieve an effective hard feasibility.

Q-Machine Scheduling Summary

 The solutions to Q-Machine scheduling expose us to the idea of prioritization

rules which allow for the solution of the problem for particular objective functions. These

methods are not effective for solution subject to the specific criteria of vehicle

minimization, but they provide a starting place for the development of our own rules and

solution index.

 Simulated annealing and the Tabu search show us the next potential stage of the

development of the research, which is to develop a refining algorithm. Tabu search,

simulated annealing or evolutionary algorithms can be used to refine the solution into a

specific high quality solution. The difficulty in implementing such a solution lies in the

complexity of handling hundreds or thousands of large scale solutions to the problem.

Without those, the refinement the heuristics can provide is minimal; with them, the

algorithm becomes cumbersome.

www.manaraa.com

18

Pragmatic Instance Summary

 In this research, the particular problem we are studying is the M++RP problem, at

large scales. The particular instance of the problem which is being discussed which we

are using as a pragmatic instance of our general problem is a Time Phased Force

Deployment Data, or TPFDD. A TPFDD consists of a large number of transportation

requirements, from a number of sources to a number of sinks, across a defined network.

The development of transportation requirements and vehicle numbers required to move

them is an interactive multi-stage process, as the number of vehicles themselves

necessitate infrastructure and movement capacity at the vehicle level. According to

Clausewitz’ Principles of War, “The provisioning of troops, no matter how it is done,

whether through storehouses or requisitions, always presents such difficulty that it must

have a decisive influence on the choice of operations.”

 As a consequence, it is of particular importance to be able to quickly generate

reasonable estimates as to the number of vehicles of various types required to execute a

TPFDD, as generating these estimates will most likely be required multiple times, in a

feedback process with both analysts and decision-makers. However, a TPFDD is

remarkably large; as many as ten thousand transportation requirements (customers),

across a network of as many as several hundred nodes, with multiple modalities, over the

course of weeks or even months, subject to constraints on earliest and latest arrival, as

well as to constraints on infrastructure for offloading that will be available, and

potentially to many other over-riding constraints which are beyond the scope of this

model.

www.manaraa.com

19

 It is a priority in all strategic situations to ensure that all deadlines and earliest

arrival dates are met, subject to feasibility; the number of vehicles used is secondary to

the accomplishment of the purpose behind the TPFDD, which may rely on any particular

requirement. For this reason, the algorithm generated here must prioritize that all

deadlines are met and only as a secondary concern handle the vehicle minimization

techniques.

 With that caveat, the solution of a vehicle minimization problem requires a

complete solution for the problem including vehicle allocations and paths, because of the

interaction of infrastructure capacity requirements. Because of this, and because any

given solution will tend to depend on the number of vehicles available, the problem must

be solved multiple times during any particular attempt to minimize the vehicle numbers.

At the very least it must be solved once for each mode. This places an even higher

priority upon high processing speed than was already necessitated by the size of the

problem and the requirement for interactive feedback.

 In the particular problem being studied it is noteworthy that the shipments will

nearly always require multiple vehicles to carry; this allows for certain simplifications

and changes of emphasis in the details of our algorithm. It is also worth noting that since

the particular scope of the TPFDD is in-theater, in our application we are unlikely to find

a solution that requires transshipment from one mode to another; instead, despite the

multi-modal nature of the problem, we may with reasonable safety confine ourselves to

the use of single modes for the duration of the trip, assuming the cost and availability of

transshipment to be prohibitive.

www.manaraa.com

20

Chapter Review

 Our final summary concludes that the particular computational complexity of the

large scale M++RP requires an approach which is computationally simple, as in the Q-

Machine scheduling priority rules, applied to a simplified problem generated according to

the decompositional rules used for smaller Vehicle Routing Problems. With the

combination of these two techniques, we can drastically reduce the calculation time

required for the generation of a feasible solution, without sacrificing unduly the

optimality of our solution. The interactivity of our pragmatic instance specifically

encourages this, as the solutions are intended as springboards for analytical thought,

rather than implementable final answers.

 With this sort of rough-cut approach to a problem of this computational

complexity, the emphasis must be placed upon reducing the processing time required to

handle the problem. Without careful management of processing time, we run the risk of

an impractical or impossible technique, which will fail to generate the timely, effective

solutions required.

 For this reason, our ultimate implementation relies upon a series of priority rules,

applied in careful order to the shipments, and solved in a specific order in order to

preserve feasibility, while minimizing vehicle number requirements.

www.manaraa.com

21

III. Methodology

Broad Analysis of the Algorithm

 At the highest level, the algorithm consists of three major steps. First, the

incoming data is separated into a network component and a shipping requirements

component. Second, the network component is processed using Dijkstra’s algorithm, to

create a network of shortest paths. Finally, the scheduling heuristic assigns the shipping

requirements to the simplified network at need. This organizational hierarchy will serve

as the structure for this chapter, as we follow the flow of data processing throughout the

algorithm.

Data Inputs

 The algorithm requires three different major data components. The first of these

components is the network itself. The network is composed of a series of nodes, with

associated distances between them, and a value for the daily unloading capacity of the

nodes in the units which are later used for shipment weight. Each of these distances and

unloading capacities must be defined for each mode. In the case of a node-node pairing

which cannot be travelled by a specific mode, it is possible to assign a ‘big M’ value for

the transportation distance in order to force the shipment onto a higher-cost, but feasible,

mode of transport. However, doing so can only cause the algorithm to transfer the

shipments upward in cost.

www.manaraa.com

22

 The second component of data required is vehicle information. The algorithm

requires data on vehicle speed, capacity, and the number of modes. This must parallel the

number of parallel modal networks provided. These data are used throughout the

algorithm. Speed, particularly, is used in all three major components of the scheduling

heuristic, either directly or indirectly.

 The third component of data is shipping requirements. Shipping requirements are

stored as a series of lists. Instead of directly manipulating the data associated with the

shipment, the algorithm uses the number of the shipment as a serial. Moving only integer

values significantly reduces the time required to sort and generate lists.

Dijkstra’s Algorithm

 Dijkstra’s algorithm is used in place of a more complicated routing solver in order

to approximate the ideal routes for vehicles. The shortest paths generated by Dijkstra’s

are good approximations if the vehicles are generally required to return to their depot

after delivery to only one site. If this is held to be so, the routing problem becomes

generally the problem of travelling from point A to point B to point A as efficiently as

possible. This is equivalent to the shortest path problem. The implementation of

Dijkstra’s algorithm in this research is illustrated below in Figure 2.

www.manaraa.com

23

Figure 2. Dijkstra’s Algorithm

 Dijkstra’s algorithm is a very efficient algorithm for solving the shortest path

problem, provided that the distance desired is from each node in a network to each other

node in the same network. It works by expanding upon paths of known distances and

tracking the shortest path discovered to each node. At each step, it advances to the next

nearest node to the origin node. It records any nodes for which the shortest known path is

longer than the distance to the current node from the origin node, plus the distance from

the current node to the observed node. It then corrects their distances down to the newly

discovered shortest path. Finally, it advances to the node which is the next closest to the

origin node, after the currently selected node.

Scheduling Heuristic Overview

 The scheduling heuristic used in this algorithm is ultimately the core of the entire

procedure. Dijkstra’s algorithm can be viewed as a pre-processing stage that puts the

input into a form conducive to the use of the scheduling heuristic. The scheduling

heuristic bears special attention, especially as it comprises the majority of the complexity

of the algorithm as well as the key part of its function.

www.manaraa.com

24

 The scheduling heuristic, as shown in Figure 3, has four key parts; these are:

Deadline Assignment, Infrastructure Assignment, Vehicle Assignment, and the

Correction Step. Deadline Assignment and Infrastructure Assignment can be viewed as

pre-processing steps, Vehicle Assignment as the core step, and the Correction Step as a

post-processing method. However, each of these steps will be iterated once for each

mode, as the overall heuristic determines the minimum number of vehicles required for

only one mode at a time.

Figure 3. Scheduling Heuristic Overview

Scheduling Heuristic Inputs

 The inputs for the scheduling heuristic have two sources. The first is Dijkstra’s

algorithm, mentioned above, which provides us with a simplified network of shortest

paths for use in the calculation of distances throughout the heuristic. The second is the

www.manaraa.com

25

shipping requirements component of the original data, which is passed on in the form of a

list of shipment numbers and a series of associated lists detailing arrival date, shipment

size, and deadline, all accessible using the shipment number as a serial. The algorithm

also acquires the vehicle data directly from the original listing.

Deadline Assignment

 Deadline analysis is the simplest of the four stages of the scheduling heuristic, and

the quickest. In deadline analysis, each of the shipments has a time-available value

calculated, which is simply the difference between arrival date for the shipment and the

deadline date. This is the amount of time that a shipment is available for shipping. We

compare this value to the speed of each mode and the distance for that mode between the

source and sink for the shipment, then, add the amount of time required to unload the

shipment. A mode for which distance/speed plus unload time is greater than the time

available certainly cannot carry a given shipment. As a consequence, we know that the

shipment must be moved higher in cost- to a faster mode.

 Deadline analysis serves two functions simultaneously. First, it ensures that

shipments which would be required to run on a more expensive mode for reasons of

available time are assigned upwards earlier. This saves the time of calculating that they

must be pushed up during the more computationally intensive infrastructure assignment

stage. Second, it ensures that these shipments cannot cause other shipments to be forced

upwards during the infrastructure stage.

 When a shipment’s cheapest potentially feasible mode has been determined by the

deadline function, it is assigned to a list associated with that mode. There is a list for each

www.manaraa.com

26

mode at the end of the deadline stage and each shipment will be in one, and only one, of

those lists. These lists form the input for the Infrastructure Assignment stage of the

algorithm.

Infrastructure Assignment

 Infrastructure Assignment can be viewed as another preprocessing stage of the

algorithm. However, it is also fair to consider the Infrastructure Assignment stage as the

stage of the algorithm wherein the unloading constraints are taken into consideration.

While unloading is considered at the Vehicle Assignment stage as well, it is at this stage

that it is most likely to cause a shipment to be moved or bumped from a mode, as

opposed to simply forcing rescheduling. In other words, this is the stage where overall

capacity of infrastructure unloading is taken into account.

 This is achieved using a 2-dimensional array. Because we handle each mode

separately, it is not necessary to maintain the full node-mode-day pairing for tracking

unloading. Instead, we simply track the node-day pairing for the mode which is currently

being analyzed.

 The algorithm starts from the earliest arrival date, and begins to check through the

list of shipments assigned to the particular mode. As it iterates through the shipments, if it

finds any shipment with the arrival date it is currently searching for, it attempts to assign

them immediately to the mode. If it fails, it adds them to the list for the next most

expensive mode. If there is no more expensive mode, the shipment is retained at this

mode. After processing through the list once, it increases the arrival date by one and

www.manaraa.com

27

processes through again. This is repeated until all shipments have been processed through

the system.

 Processing based upon earliest arrival date is known as the EAD priority rule.

This rule has several advantages. Primarily, it ensures that the infrastructure begins work

as early as possible. That is to say that since no shipment can arrive prior to the shipments

with the earliest arrival date, if they are the first shipments assigned, we can guarantee

minimal lead-time, which helps in reducing wasted processing time.

 EAD is approximately equivalent to the First Come First Served (FCFS) rule,

which is intuitively a very efficient means of ensuring that the infrastructure is efficiently

used. The primary failing of FCFS and EAD is relative to rules such as Shortest

Processing Time or Weighted Shortest Processing Time. EAD is efficient at ensuring the

maximum possible tonnage is carried, but does not account for weighting across

tonnages. Fortunately, in our case, it is assumed that all shipments have equally inviolate

priority.

 The process of assignment for infrastructure is a relatively simple one. Each

shipment is taken in order, and the algorithm searches the array to attempt to find space to

unload it. At this point, we do not concern ourselves with vehicles. However, we do add

the constraint that no shipment can be unloaded before its arrival time plus time of travel

to the unloading point.

 In order to search the array for the appropriate amount of time, we first calculate

the time required for unloading. This is simply the size of the shipment divided by

unloading capacity. We then find our start point, which is the arrival time for the

www.manaraa.com

28

shipment plus the travel time required on the mode in use. Finally, we iterate from this

point to the deadline for the shipment, summing all free time we find.

 The array used to track the amount of free infrastructure capacity is made up of

the amount of capacity free on any given day. Each value is between 0 and 1. If the value

is 0, the day is completely free. If the value is 1, the day is completely full. Any value

other than these two represents a partially used day. The algorithm adds the remaining

portion of the day for each day between the start time and the deadline, except the first.

For that day, it adds the remainder only if the already allocated portion of the day is larger

than travel time. This prevents the shipment from being treated as unloading while it is

still in travel.

 If the algorithm finds sufficient space for the unloading of the shipment, then the

shipment is added to the output list for this mode. If it does not, then it is added to the

output list for the next most expensive mode. It is not necessary at this stage for the

loading to be contiguous, as the specifics of assignment are handled at the vehicle

assignment stage.

Vehicle Assignment

 The vehicle assignment algorithm is the core of the scheduling heuristic. It

receives a list of shipments which must be assigned to the most expensive mode from the

infrastructure assignment component, and it converts that list into both a detailed

schedule and a requirement in terms of number of vehicles. Because it is so essential, and

because it is complex, it merits a more detailed look than either the deadline or

infrastructure components of the heuristic.

www.manaraa.com

29

 The vehicle assignment algorithm uses the same method of selection for

shipments as the infrastructure method. It chooses them based on earliest arrival date,

tracking down through the assigned list, iterating each arrival date in turn.

 Once the shipment has been chosen, the algorithm first determines the number of

vehicles necessary to carry the shipment. This is the size of the shipment divided by the

capacity of the vehicle, rounded upwards. The algorithm then begins the search for

appropriate vehicle and unloading space for the shipment.

 The first step in this process is identifying a free space on a vehicle. Much as in

the infrastructure array, we use an array to track the usage of the vehicles. Unlike in the

infrastructure array, however, we must seek to gain continuous use of the vehicle for the

full duration of the trip. So rather than simply beginning at our starting point and

proceeding to deadline, summing the free space, we use a rather more complicated

summation process. We begin at the arrival day for the shipment and iterate through the

chosen vehicle’s days. If we find a day that is empty, we add 1 to our currently found free

time. If we find a day that is not empty, we add the remainder of its capacity to our

currently found free time. If, after adding the new capacity, the free time found is greater

than the amount needed, we mark our original start time as an appropriate start time for

the shipment-component and proceed to the infrastructure correction step. If not, we set

our total free time equal to the remainder, and set the current day as our start time.

 If we fail to identify a free spot large enough to carry the shipment and our

vehicle isn’t one that was generated just for this shipment, then we generate a new

vehicle to carry the shipment. If the vehicle was generated just for this shipment, then we

ignore the deadline limitation and assign the shipment as late, if necessary.

www.manaraa.com

30

 If, however, we identify a free spot in the vehicles where the shipment could be

carried, we must now confirm that there is infrastructure available to unload the shipment

in the appropriate place. This process is identical to the process for finding free space on

a vehicle, except that new infrastructure cannot be generated. If we find ourselves pushed

past the deadline on infrastructure, we instead simply must assign past the deadline.

 If the start time found by the vehicle-search is confirmed by the unload-search,

then we may add it to our list and begin searching for vehicle and unload space for the

next shipment-component. However, if it is not, we find the next start time available

among the vehicles, starting at the one suggested by our unload-search. If the start time

required correction, we repeat the process until the shipment is assigned.

 If at any time we are forced to use a new vehicle, we track the number of this

vehicle. The last vehicle we are forced to generate is the minimum number of vehicles

required to service this set of requirements.

 Finally, when we have found appropriate start times for all the components of a

shipment, we allocate the shipment and fill the capacity in the unload and vehicle arrays.

It is at this point that we remove the shipment from the shipment requirements array, to

represent that it has been assigned.

www.manaraa.com

31

Correction Step

 The correction step is the final process in the scheduling heuristic. In this stage,

the algorithm uses the same search procedures used in the vehicle assignment stage,

iterating through all unassigned shipments in EAD order. However, if it fails to find

capacity, it simply moves on to the next shipment, rather than generating a new vehicle.

 It treats the number of vehicles generated by the vehicle assignment step as a

capacity on the amount of flow the vehicles are capable of handling. However, if a

shipment can be assigned, it is assigned and deleted from the shipment list.

www.manaraa.com

32

IV. Results and Analysis

Simple Test Case

 In order to examine the capabilities of the algorithm, a series of test cases were

created. The test cases were deliberately chosen for ease of solution, in order to make

comparison against an intuitive or obvious perfect solution, simple for the reader. In the

first case, our study case is hyper-simplified and consists of only 5 shipments, each with a

three-day gap between arrival and delivery, arriving at the same source node, one per day,

over a five day period, all of which are destined for the same sink node.

 For simplicity's sake, this example deals in only one mode and the sizes of the

five shipments are equal to the capacity of the vehicles, resulting in exactly one shipment

being carried by each vehicle per trip. The vehicle was given a speed of 100, and the

distance between nodes 1 and 2 was set to 100; also, the unloading capacity for the sink

node was set to 100, to simplify displaying the outcome. Table 1 summarizes the shipping

requirements for the system.

www.manaraa.com

33

Table 1. Simple Test Case Data Input

Shipment Size Source Sink Arrival Deadline

S1 100 1 2 1 4

S2 100 1 2 2 5

S3 100 1 2 3 6

S4 100 1 2 4 7

S5 100 1 2 5 8

 The algorithm returned the following, displayed in Table 2, as a feasible

resolution of the system, determining that the number of vehicles required for such a

solution was three.

Table 2. Simple Test Case Results Output

Shipment Start Time Arrival Time Vehicle Number Ahead of
Deadline

S1 1 4 1 Yes

S2 2 5 2 Yes

S3 3 6 3 Yes

S4 4 7 1 Yes

S5 5 8 2 Yes

www.manaraa.com

34

 Examining the solution shown in Table 2, it is possible to chart the assignments

which each of the three vehicles had for the duration of the transportation solution; for

clarity, the schedule produced is shown below in Table 3.

Table 3. Simple Test Case Vehicle Schedule

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 S1
delivery

S1 unload S1 return S4
delivery

S4 unload S4 return Idle

2 Idle S2
delivery

S2 unload S2 return S5
delivery

S5 unload S5 return

3 Idle Idle S3
delivery

S3 unload S3 return Idle Idle

Modified Simple Case

 The algorithm, then, is capable of achieving an intuitive result on a small scale.

Given that this test case is equivalent to the case where all shipments can be carried on a

single cheapest mode, that data shall not be repeated here. However, a secondary

component of the algorithm which bears examination is its capacity to compensate for a

shipment being forced onto a high cost mode, by utilizing the idle capacity of that mode

to the greatest extent possible. As a consequence, our second test case, the modified

simple case, will change the base case in two ways. First, it will add a second mode,

considered more expensive than the first, which travels at a rate of 200 units per day, with

identical independent unloading capacity to the first mode. Second, it will change the

deadline on the first shipment to 2. The input for this case is shown in Table 4.

Because the first shipment has a deadline of 2, it is impossible for it to be

delivered by the deadline using the first or second modes, and so it will be forced to

travel on the second mode in order to minimize the violation of the deadline

www.manaraa.com

35

(guaranteeing a minimum number of vehicles for the second mode of at least one).

However, the rest of the vehicle's time is not accounted for, and so we must allocate as

many shipments as possible to the idle time on that vehicle in order to minimize the

number of lower cost vehicles used.

 In this instance, the utilization of the mode allows for two additional shipments to

be handled by the most expensive mode, on the same vehicle that is handling the first

shipment, resulting in two fewer vehicles being required on the first mode.

Table 4. Modified Simple Case Data Input

Shipment Size Source Sink Deadline

S1 100 1 2 2

S2 100 1 2 5

S3 100 1 2 6

S4 100 1 2 7

S5 100 1 2 8

 In this case, it is worth detailing the differences between the two modes, as well as

their similarities, which can be seen in Table 5:

Table 5. Modified Simple Case Vehicle Data

Vehicle Capacity Unload Rate Speed

1 100 100 100

2 100 100 200

www.manaraa.com

36

 The chart of our delivery times, travel times, and vehicle pairings is given below

in Table 6, and below that, the chart of the vehicle time-assignments is given.

Table 6. Modified Simple Case Shipment Schedule

Shipment Start Time Arrival Time Vehicle Number Ahead of
Deadline

S1 1 2.5 1 (Mode 2) No

S2 3 4.5 1 (Mode 2) Yes

S3 3 5 1 (Mode 1) Yes

S4 5 6.5 1 (Mode 2) Yes

S5 6 8 1 (Mode 1) Yes

 Because the second mode performs deliveries in one half-day, the pattern is that

on the 'outgoing' day, the travel is completed outgoing, and half of the unloading is done,

and on the next day, the remainder of the unloading is completed, and then the shipment

is returned, as demonstrated by Table 7.

Table 7. Modified Simple Case Vehicle Schedule

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day7
1 (Mode 2) S1 Out S1 Return S2 Out S2 Return S4 Out S4 Return Idle
1 (Mode 1) Idle Idle S3 Out S3

Deliver
S3 Return S5 Out S5

Deliver

 This demonstrates the capacity of the algorithm to combine minimization

techniques in order to reduce the impact of forced increases in the number of high-cost

www.manaraa.com

37

vehicles being deployed, by utilizing those new, largely idle, vehicles in order to decrease

the number of vehicles required at lower tiers. Of course, in a more complex problem,

resolutions will be substantially more complicated to come by, and in most cases, less

efficient, and less obviously so. However, the general principle of efficient allocation still

holds in more complex cases.

Multinodal, Multimodal Demonstration Case

 The complexity of the algorithm, and its potency, rests upon its capacity to deal

efficiently, and quickly, with problems that handle both multiple sources and sinks, and

multiple modes, on large scale, but of course it is difficult to demonstrate efficiency in the

large scale, because by-hand and intuitive solutions are hard to come by. Instead, we

examine the efficacy of the algorithm using a smaller multimodal, multinodal pattern.

 In this instance, our case involves three modes, over four nodes, each equidistant

at 100 units from each other node, and each capable of unloading 100 units per day from

each mode. For this problem, the speeds for our three vehicle types are 50, 100, and 200

units and the capacities are the same. We will process twelve shipments across the nodes,

using nodes 1 and 2 solely as sources, and nodes 3 and 4 solely as sinks. The sum of all

tonnage shipped is 2400 and the arrival times and deadlines are broadly separated,

allowing for a powerful estimate of 2400/10 or 240 tons per day of shipping power being

a floor on the number of tons per day of vehicle required to handle the shipping.

 Of course, at this tier of processing, the outputs become significantly more

complicated. As a consequence, we will simply list the vehicle number, node, start time,

and mode for each shipment and shipment-component, as shown in Table 8.

www.manaraa.com

38

Table 8. Multimodal Simple Case Data Input

Shipment
No.

Source Sink Size Arrival Deadline

1 1 3 100 1 7
2 2 3 200 1 7
3 1 4 300 1 7
4 2 4 100 1 7
5 1 3 200 3 10
6 2 3 300 3 10
7 1 4 100 3 10
8 2 4 200 3 10
9 1 3 300 1 7

10 2 3 100 1 7
11 1 4 200 3 10
12 2 4 300 3 10

This list is not the original data output from the program, but has been sorted to

highlight both the process behind the assignment of shipments to specific vehicles and a

problem induced by the specific granularity of the shipments. Note that the shipments fit

neatly together, as regards unloading. This is due to the algorithm’s deliberate seeking of

gaps at every stage of a schedule’s creation, resulting in carefully stacked shipment

unloading times. Of course, this method is aided by the uniformity of vehicle unload-

times, which are in the algorithm artificially held constant, as a relationship between the

size of vehicle, and the capacity for unloading that particular vehicle at that particular

node. Nonetheless, the algorithm has finely used all available unloading space in this

limited example.

A notable, potential error is the double-booking effect visible in the use of mode

2, node 3 unloading capacity. Shipment-components are being loaded simultaneously,

resulting in unloading times taking up the same block, theoretically. This, of course, is an

www.manaraa.com

39

impossibility according to the strict rules of the problem. The shipments, according to our

previous assumptions, use all unloading capacity totally and therefore cannot be unloaded

simultaneously.

The cause of this apparent error is double-booking. The shipments are both

attempting to use the latter half of the first day on which they both arrive, and the first

half of the next day. As the algorithm does not have sufficient granularity to track half-

days, the shipments are nominally double-booking.

The next table, Table 9, shows the data with a view to the particular assignments

made to specific vehicles at specific times. Notably, it sorts by mode, then vehicle

number, and then start-time, in order to demonstrate the relative efficiency and

inefficiency of allocation according to the algorithm.

In this case, the algorithm generates an essentially perfect solution to the system,

using virtually every open space, and the result is intuitively near-optimal. For mode 1,

each vehicle can handle at most 3 assignments (as it requires three days to deliver any in

particular, and the latest deadline is day 10). From this we know that, at least, we would

need 5 vehicles, as we have 14 shipments. Shipment 7, our last shipment, has a deadline

on day 7, and so it is apparent it could not easily be transferred to vehicle 4 or 5 with the

shipment loads as they currently stand. While it is conceivable that a more efficient

solution exists, the solution generated by the algorithm is intuitively near-optimal, at least

for mode 1. On mode 2, we simply observe that both vehicles are identically full.

www.manaraa.com

40

Table 9. Multimodal Simple Case Shipment Output

Mode Vehicle Start Time Shipment Sink
1 1 1 2 3
1 1 4 2 3
1 1 7 8 4
1 2 1 3 4
1 2 4 3 4
1 2 8 8 4
1 3 2 3 4
1 3 5 4 4
1 3 9 11 4
1 4 2 9 3
1 4 5 9 3
1 5 3 9 3
1 5 6 11 4
1 6 3 7 4
2 1 1 10 3
2 1 3 6 3
2 1 5 6 3
2 1 7 6 3
2 1 9 12 4
2 2 1 1 3
2 2 3 12 4
2 2 5 12 4
2 2 7 5 3
2 2 9 5 3

 To compare to our earlier values, we have 6 vehicles of type 1, shipping 100 units

every 3 days, and 2 vehicles of type 2, shipping 100 units every 2 days, for a total of 300

units of shipping capacity. This compares favorably to our lower bound estimate of 240

tons as an absolute minimum, given the effects of infrastructure interference and the

uneven effect of making trips of duration 3 days during a space of 10 days.

www.manaraa.com

41

Multimodal Large Scale Case

In order to test the algorithm’s capacity to perform at large scale, a new shipping

requirement list was created for the multimodal simple case. In this expansion of the

original problem, we extrapolated the original data set to one hundred shipments, and

extended the infrastructure capacity of the underlying network to handle 100,000 units

per node per day, in order to ensure feasibility.

Solution of the problem required approximately five seconds. The data that was

returned indicated that 212 vehicles were required to handle the shipping, all of the same

mode, which approximately conforms to expectations. Given that infrastructure and

deadline limitations were not concerns, all shipments should have been processed on the

first mode. This was indeed the case.

Determining whether the solution was ultimately feasible would require detailed

comparison of each shipment to each other shipment and to the overall infrastructure

capacity and vehicle usage charts, in order to confirm the validity of the original result,

but a superficial examination reveals start times which increase slowly as the

infrastructure begins to fill.

A second attempt was made to process the same set of shipments, using infrastructure

of only 100 per day. This resulted in massive over-flow, as predicted, over-flowing the

limited 2-dimensional array for unloading. The array was defined to allow unloading to

take place only twice the difference between the latest deadline and the earliest arrival

from the earliest arrival. Because the shipping requirements were infeasible beyond

anticipated infeasibility, the algorithm could not provide even an infeasible schedule.

www.manaraa.com

42

V. Conclusions

Summary

The combination of Dijkstra’s algorithm and scheduling heuristic developed here

provide an efficient schedule for a multiple vehicle routing problem and an efficient high

estimate on the number of vehicles required. In Chapter II, we showed that the field of

solution techniques for large scale VRP is sparse when providing schedules for above

500 shipments. In Chapter IV, we demonstrated that the algorithm illustrated here can

resolve the MVRP with 500 shipments in a very short period of time.

The algorithm is highly specialized. It requires that vehicles travel directly from

source to sink, and then return to source. It also requires that vehicles be allowed to carry

only one shipment or shipment component, that shipments be required to travel

unimodally, and that speed and cost increase together continuously. Finally, it requires a

large differential in cost between each vehicle type.

With those caveats, the algorithm is timely and effective. It provides efficient

solutions in a short time frame at large scale. The solutions are heuristic but provide a

feasible solution of good quality and a starting point for correction by Tabu search and

other heuristics.

www.manaraa.com

43

Future Research

 The research suggests several notable avenues for future research. Firstly, the

algorithm could be combined with another heuristic to generate more optimal solutions.

For example, a Tabu search could be applied after the generation of the initial solution by

this algorithm, providing a correction mechanism.

 Secondly, the algorithm could be extended to true multi-modality for single

shipments. By generating multimodal shortest paths, as well as unimodal shortest paths,

in the Dijkstra’s stage, and using an appropriate costing mechanism during the scheduling

heuristic, the algorithm could handle multimodal paths, treating them as another type of

vehicle.

 Thirdly, the algorithm could be extended to handle multiple shipments on the

same vehicle. The intuitive approach to this extension would be to add another step to the

scheduling heuristic that attempted to use excess capacity on vehicles which were already

scheduled. This would allow for more efficient use of the vehicles and better solutions. It

would especially improve solutions in instances where the shipments were generally

smaller than the capacity of a single vehicle.

www.manaraa.com

44

Appendix A: Shortest Path Network Generator

This subprocedure is the core process for the Dijkstra’s algorithm component of
the thesis. It iterates through the nodes, applies the Dijkstra’s subprocedure to them, and
records the results of the Dijkstra’s algorithm for each source node in turn.

Sub simplifynetwork()
 Dim n As Integer
 Dim i As Integer
 Dim SourceNode As Integer
 Dim NetworkSheet As String
 Dim numnodes As Integer
 NetworkSheet = ActiveSheet.Name
 SourceNode = 1
 n = 1
 i = 1
 j = 1
 Sheets(NetworkSheet).Activate
 Range("A1").Select
 Do While ActiveCell.Offset(n, 0).Value <> 0
 n = n + 1
 Loop
 numnodes = n - 1
 Sheets.Add.Name = "Simplified " & NetworkSheet
 Sheets.Add.Name = "Simplified " & NetworkSheet & " Paths"
 Do While SourceNode <= numnodes
 DijkstrasAlgorithm SourceNode, numnodes, NetworkSheet
 SourceNode = SourceNode + 1
 Loop
 Sheets("Simplified " & NetworkSheet & " Paths").Activate
 ActiveCell.Value = "Nodes"
 Do While i <= numnodes
 ActiveCell.Offset(0, i) = Str(i)
 ActiveCell.Offset(i, 0) = Str(i)
 i = i + 1
 Loop
 Sheets("Simplified " & NetworkSheet).Activate
 ActiveCell.Value = "Nodes"
 Do While j <= numnodes
 ActiveCell.Offset(0, j) = Str(j)
 j = j + 1

www.manaraa.com

45

 Loop
End Sub

This subprocedure is Dijkstra’s Algorithm. It uses Dijkstra’s method for defining
the distance between a specific node and all other nodes in a network to define a list of
distances between a source node and all other nodes.

Sub DijkstrasAlgorithm(SourceNode As Integer, numnodes As Integer, NetworkSheet As
String)
 Dim CurrentNode As Integer
 Dim CurrentDist As Double
 Dim AmDone As Boolean
 Dim ShortestDist() As Double
 Dim BigM As Double
 Dim n As Integer
 Dim i As Integer
 Dim j As Integer
 Dim CurrentLowDist As Double
 Dim CurrentLowNode As Integer
 Dim FoundUnexplored As Boolean
 Dim K As Integer
 Dim DistOnThisPath As Double
 Dim ShortestPath() As String
 Dim p As Integer
 AmDone = False
 CurrentNode = SourceNode
 CurrentDist = 0
 BigM = 1E+300
 n = 1
 ReDim ShortestDist(1 To numnodes)
 ReDim ShortestPath(1 To numnodes)
 Do While n <= numnodes
 ShortestDist(n) = BigM
 ShortestPath(n) = Str(SourceNode)
 n = n + 1
 Loop
 ShortestDist(SourceNode) = 0
 Do While AmDone = False
 i = 1
 Do While i <= numnodes
 DistOnThisPath = finddist(CurrentNode, i, NetworkSheet) +
ShortestDist(CurrentNode)
 If DistOnThisPath < ShortestDist(i) Then

www.manaraa.com

46

 ShortestDist(i) = DistOnThisPath
 ShortestPath(i) = ShortestPath(CurrentNode) & Str(i)
 End If
 i = i + 1
 Loop
 j = 1
 CurrentLowDist = BigM
 FoundUnexplored = False
 Do While j <= numnodes
 If ShortestDist(j) > CurrentDist Then
 If ShortestDist(j) < CurrentLowDist Then
 CurrentLowDist = ShortestDist(j)
 CurrentLowNode = j
 FoundUnexplored = True
 End If
 ElseIf ShortestDist(j) = CurrentDist Then
 If CurrentNode < j Then
 CurrentLowDist = ShortestDist(j)
 CurrentLowNode = j
 FoundUnexplored = True
 End If
 End If
 j = j + 1
 Loop
 If FoundUnexplored = False Then
 AmDone = True
 ElseIf FoundUnexplored = True Then
 CurrentNode = CurrentLowNode
 CurrentDist = CurrentLowDist
 End If
 Loop
 Sheets("Simplified " & NetworkSheet).Activate
 ActiveSheet.Range("A1").Select
 K = 1
 Do While ActiveCell.Offset(K, 0).Value <> 0
 K = K + 1
 Loop
 ActiveCell.Offset(K, 0) = SourceNode
 l = 1
 Do While l < numnodes + 1
 ActiveCell.Offset(K, l) = ShortestDist(l)
 l = l + 1
 Loop
 Sheets("Simplified " & NetworkSheet & " Paths").Activate
 ActiveSheet.Range("A1").Select

www.manaraa.com

47

 p = 1
 Do While p < numnodes + 1
 ActiveCell.Offset(K, p) = ShortestPath(p)
 p = p + 1
 Loop
End Sub

 This function is used for finding the distances in the original network between any
node and any other node, using direct paths. It is assumed that the original network
contains connections between each path, although setting the distance arbitrarily large has
the effect of eliminating the connection, since any shorter path will replace it.

Function finddist(SourceNode As Integer, sinknode As Integer, NetworkSheet As String)
 Sheets(NetworkSheet).Activate
 ActiveSheet.Range("A1").Select
 finddist = CDbl(ActiveCell.Offset(SourceNode, sinknode).Value)
End Function

www.manaraa.com

48

Appendix B: Ordered Scheduling Heuristic

Public NumNodes As Integer
Public NumModes As Integer
Public numshipments As Integer
Public SimpleNetwork() As Variant
Public minvehicles() As Integer
Public latedeadline As Integer
Public highestused As Integer
Public ShArrival() As Variant
Public ShDeadline() As Variant
Public vehiclespeeds() As Variant
Public shsize As Variant
Public shsink As Variant
Public shsource As Variant
Public vcapacity As Variant
Public shUnloadTime() As Double
Public shipmentarray() As Integer
Public shipmentarraynum As Integer
Public vunloadtime() As Double
Public index As Integer
Public shtraveltime() As Double

 This is the core procedure for the Heuristic Scheduler. It handles the process of
tracking which mode is being minimized, as well as passing the array of shipments to be
processed from component to component.

Sub HeuristicScheduler()
 Dim NumShipArray As Integer
 Dim DeadlineArray() As Integer
 Dim DeadlineTracker() As Integer
 Dim infraarray() As Integer
 Dim infratracker() As Integer
 Dim n As Integer
 Dim mode As Integer
 Popglobals
 PopulateSimpleNetwork
 index = 1
 ReDim shUnloadTime(1 To NumModes, 1 To numshipments)
 ReDim shipmentarray(1 To numshipments)
 shipmentarraynum = numshipments

www.manaraa.com

49

 n = 1
 Do While n <= numshipments
 shipmentarray(n) = n
 n = n + 1
 Loop
 mode = NumModes
 Do While mode > 0
 DeadlineArrayGenerator shipmentarray(), shipmentarraynum, DeadlineArray(),
DeadlineTracker()
 InfraArrayGenerator DeadlineArray(), DeadlineTracker(), infraarray(), infratracker()
 ListVehicAssign infraarray(), infratracker(), mode
 eliminateshipments infraarray(), infratracker(), mode, shipmentarray(),
shipmentarraynum
 mode = mode - 1
 Loop
End Sub

www.manaraa.com

50

 This subprocedure is responsible for eliminating the shipments which have been
assigned as part of the Vehicle Assignment step. It tracks through all assigned shipments,
finds them in the original array, and deletes them, replacing them with the last value in
the array, and reducing the size of the array by 1.

Sub eliminateshipments(infraarray() As Integer, infratracker() As Integer, mode As
Integer, shipmentarray() As Integer, shipmentarraynum As Integer)
 Dim n As Integer
 Dim k As Integer
 Dim elim As Boolean
 elim = False
 n = 1
 k = 1
 Do While n <= infratracker(mode)
 Do While k <= shipmentarraynum And elim = False
 If infraarray(mode, n) = shipmentarray(k) Then
 elim = True
 shipmentarray(k) = shipmentarray(shipmentarraynum)
 shipmentarraynum = shipmentarraynum - 1
 End If
 k = k + 1
 Loop
 elim = False
 k = 1
 n = n + 1
 Loop
End Sub

www.manaraa.com

51

 This subprocedure handles the process of choosing shipments from the output of
the Infrastructure Assignment step to be assigned to specific vehicles. It iterates through
the output of the Infrastructure Assignment step for the minimizing mode, in order of
arrival date, and sends the shipments which are chosen to the shipment assignment step,
ShipmentVehicAssign.

Sub ListVehicAssign(infraarray() As Integer, infratracker() As Integer, mode As Integer)
 Dim n As Integer
 Dim VehicAssignArray() As Double
 Dim unloadarray() As Double
 Dim currmode As Integer
 ReDim VehicAssignArray(1 To minvehicles(mode), 1 To latedeadline)
 ReDim unloadarray(1 To NumNodes, 1 To latedeadline)
 highestused = 0
 n = 1
 Do While n <= infratracker(mode)
 ShipmentVehicAssign VehicAssignArray(), infraarray(mode, n), mode,
unloadarray(), highestused
 n = n + 1
 Loop
 minvehicles(mode) = highestused
 If mode > 1 Then
 listgapcheck VehicAssignArray(), infraarray(), infratracker(mode - 1), mode,
unloadarray()
 End If
End Sub

www.manaraa.com

52

 ListGapCheck iterates through the reduced shipment list, after the Vehicle
Assignment step, and sends each shipment to ShipmentGapCheck. ShipmentGapCheck
then determines whether the current infrastructure and vehicle assignments for the
minimized mode can handle the additional shipment. ShipmentGapCheck then eliminates
the shipment, if it can be assigned, and fills in the appropriate gaps.

Sub listgapcheck(VehicAssignArray() As Double, ShipmentList() As Integer, infranum
As Integer, currmode As Integer, unloadarray() As Double)
 Dim n As Integer
 Dim found As Boolean
 Dim currvehicle As Integer
 n = 1
 Do While n <= infranum
 ShipmentGapCheck VehicAssignArray(), ShipmentList(), n, infranum, currmode,
unloadarray()
 n = n + 1
 Loop
End Sub

www.manaraa.com

53

 ShipmentGapCheck attempts to assign the shipment given to it to the recently
minimized mode, searching for any gaps large enough to carry the current shipment. If it
can find such a gap, it fills the gap, and deletes the shipment from the array of unassigned
shipments.

Sub ShipmentGapCheck(VehicAssignArray() As Double, ShipmentList() As Integer,
ShipmentNumber As Integer, infranum As Integer, mode As Integer, unloadarray() As
Double)
 Dim currvehicle As Integer
 Dim found As Boolean
 Dim currstart As Double
 Dim starttimes() As Double
 Dim foundvehicles As Integer
 Dim vehicles() As Integer
 Dim shipment As Integer
 Dim i As Integer
 Dim j As Integer
 Dim elim As Boolean
 Dim pseudounloadarray() As Double
 Dim l As Integer
 Dim k As Integer
 Dim traveltime As Double
 ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline)
 shipment = ShipmentList(mode - 1, ShipmentNumber)
 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)
 currvehicle = 1
 l = 1
 k = 1
 Do While l <= NumNodes
 Do While k <= latedeadline
 pseudounloadarray(l, k) = unloadarray(l, k)
 k = k + 1
 Loop
 k = 1
 l = l + 1
 Loop
 If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0
Then
 neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1
 Else
 neededvehicles = Int(shsize(shipment) / vcapacity(mode))
 End If
 ReDim vehicles(1 To neededvehicles)

www.manaraa.com

54

 ReDim starttimes(1 To neededvehicles)
 Do While currvehicle <= minvehicles(mode) And foundvehicles < neededvehicles
 If foundvehicles > 0 Then
 If vehicles(foundvehicles) = currvehicle Then
 currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) +
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode)
 Else
 currstart = 0
 End If
 Else
 currstart = 0
 End If
 found = True
 corrected = True
 Do While found = True And corrected = True
 found = findstarttime(VehicAssignArray(), mode, starttimes(foundvehicles + 1),
currvehicle, currstart, shipment)
 corrected = correctstarttime(pseudounloadarray(), mode, starttimes(foundvehicles
+ 1), currvehicle, found, shipment, currstart)
 Loop
 If found = True Then
 foundvehicles = foundvehicles + 1
 allocate starttimes(foundvehicles) + traveltime, pseudounloadarray(),
shsink(shipment), vunloadtime(mode, shsink(shipment))
 vehicles(foundvehicles) = currvehicle
 n = n + 1
 Else
 currvehicle = currvehicle + 1
 corrected = True
 found = True
 End If
 Loop
 i = 1
 If foundvehicles >= neededvehicles Then
 Do While i <= neededvehicles
 allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(),
unloadarray(), mode
 i = i + 1
 Loop
 j = 1
 Do While j <= infranum And elim = False
 If shipmentarray(j) = shipment Then
 shipmentarray(j) = shipmentarray(shipmentarraynum)
 shipmentarraynum = shipmentarraynum - 1
 elim = True

www.manaraa.com

55

 End If
 j = j + 1
 Loop
 End If
End Sub

www.manaraa.com

56

ShipmentVehicAssign handles the process of tracking the starttimes for various
components of a shipment, and passes the components to the parts of the algorithm to
findstarttime and correctstarttime, the subprocedures responsible for finding gaps large
enough to handle a shipment, both in the vehicle array, and in the unloading array.

It also maintains the pseudo unload array, an array used to track hypothetical
points of unloading for shipment components prior to their final assignment.

Sub ShipmentVehicAssign(VehicAssignArray() As Double, shipment As Integer, mode
As Integer, unloadarray() As Double, highestused As Integer)
 Dim neededvehicles As Integer
 Dim n As Integer
 Dim i As Integer
 Dim starttimes() As Double
 Dim found As Boolean
 Dim corrected As Boolean
 Dim currstart As Double
 Dim vehicles() As Integer
 Dim currvehicle As Integer
 Dim pseudounloadarray() As Double
 Dim j As Integer
 Dim k As Integer
 Dim temphighestused As Integer
 Dim traveltime As Double
 ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline)
 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)
 j = 1
 k = 1
 Do While j <= NumNodes
 Do While k <= latedeadline
 pseudounloadarray(j, k) = unloadarray(j, k)
 k = k + 1
 Loop
 k = 1
 j = j + 1
 Loop
 If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0
Then
 neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1
 Else
 neededvehicles = Int(shsize(shipment) / vcapacity(mode))
 End If
 ReDim starttimes(1 To neededvehicles)
 ReDim vehicles(1 To neededvehicles)
 n = 1

www.manaraa.com

57

 currvehicle = 1
 temphighestused = highestused
 Do While n <= neededvehicles
 corrected = True
 found = True
 If foundvehicles > 0 Then
 If vehicles(foundvehicles) = currvehicle Then
 currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) +
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode)
 Else
 currstart = 0
 End If
 Else
 currstart = 0
 End If
 Do While corrected = True And found = True
 found = findstarttime(VehicAssignArray(), mode, starttimes(n), currvehicle,
currstart, shipment)
 corrected = correctstarttime(pseudounloadarray(), mode, starttimes(n),
currvehicle, found, shipment, currstart)
 Loop
 If found = True Or currvehicle > temphighestused Then
 vehicles(n) = currvehicle
 foundvehicles = foundvehicles + 1
 allocate starttimes(n) + traveltime, pseudounloadarray(), shsink(shipment),
vunloadtime(mode, shsink(shipment))
 If vehicles(foundvehicles) > temphighestused Then
 temphighestused = vehicles(foundvehicles)
 End If
 n = n + 1
 Else
 currvehicle = currvehicle + 1
 currstart = 0
 corrected = True
 found = True
 End If
 Loop
 i = 1
 Do While i <= neededvehicles
 If shipment = 3 Then
 shipment = shipment
 End If
 allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(),
unloadarray(), mode
 i = i + 1

www.manaraa.com

58

 Loop
 If vehicles(neededvehicles) > highestused Then
 highestused = vehicles(neededvehicles)
 End If
End Sub

www.manaraa.com

59

 This procedure is used to allocate a shipment component whose starttime is
known. The algorithm simply fills in the gap it is passed, using the shipment and vehicle
information to determine how much of the gap must be filled in.

Sub allocshipvehic(starttime As Double, vehicle As Integer, shipment As Integer,
VehicAssignArray() As Double, unloadarray() As Double, mode As Integer)
 Dim reqvehictime As Double
 Dim requnloadtime As Double
 Dim allocvehictime As Double
 Dim allocunloadtime As Double
 Dim currtime As Double
 Dim timetransfervariable As Double
 Dim currday As Integer
 Sheets("Output").Range("A1").Offset(index, 0) = shipment
 Sheets("Output").Range("A1").Offset(index, 1) = vehicle
 Sheets("Output").Range("A1").Offset(index, 2) = starttime
 Sheets("Output").Range("A1").Offset(index, 3) = mode
 Sheets("Output").Range("A1").Offset(index, 4) = shsink(shipment)
 index = index + 1
 reqvehictime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment))
 requnloadtime = vunloadtime(mode, shsink(shipment))
 currday = Int(starttime)
 allocvehictime = 0
 Do While allocvehictime < reqvehictime
 timetransfervariable = 1
 If timetransfervariable > (1 - starttime + currday) Then
 timetransfervariable = 1 - starttime + currday
 End If
 If timetransfervariable > 1 - VehicAssignArray(vehicle, currday) Then
 timetransfervariable = 1 - VehicAssignArray(vehicle, currday)
 End If
 If timetransfervariable > reqvehictime - allocvehictime Then
 timetransfervariable = reqvehictime - allocvehictime
 End If
 VehicAssignArray(vehicle, currday) = VehicAssignArray(vehicle, currday) +
timetransfervariable
 allocvehictime = allocvehictime + timetransfervariable
 currday = currday + 1
 Loop
 currday = Int(starttime + SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode))
 Do While allocunloadtime < requnloadtime
 timetransfervariable = requnloadtime - allocunloadtime

www.manaraa.com

60

 If timetransfervariable > (1 - starttime - SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + currday) Then
 timetransfervariable = (1 - starttime - SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + currday)
 End If
 If timetransfervariable > 1 - unloadarray(shsink(shipment), currday) Then
 timetransfervariable = 1 - unloadarray(shsink(shipment), currday)
 End If
 unloadarray(shsink(shipment), currday) = unloadarray(shsink(shipment), currday) +
timetransfervariable
 allocunloadtime = allocunloadtime + timetransfervariable
 currday = currday + 1
 Loop
End Sub

www.manaraa.com

61

 This function is used to determine whether a certain start time found in the vehicle
array to be large enough for a particular shipment component has a corresponding gap in
the unload array which is large enough to handle the shipment. If not, the function finds
the next gap that is large enough, and returns it as a suggestion to the vehicle search
component.

Function correctstarttime(infraassignarray() As Double, mode As Integer, starttime As
Double, currvehicle As Integer, found As Boolean, shipment As Integer, currstart As
Double)
 Dim currunloadtime As Double
 Dim currday As Integer
 Dim traveltime As Double
 Dim availtime As Double
 Dim curravailtime As Double
 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)
 currunloadtime = starttime + traveltime
 currday = Int(currunloadtime)
 Do While availtime < vunloadtime(mode, shsink(shipment)) And currday <
latedeadline
 curravailtime = 1
 If 1 - infraassignarray(shsink(shipment), currday) < curravailtime Then
 curravailtime = 1 - infraassignarray(shsink(shipment), currday)
 End If
 If 1 - (currunloadtime - currday) < curravailtime Then
 curravailtime = 1 - (currunloadtime - currday)
 End If
 availtime = availtime + curravailtime
 If infraassignarray(shsink(shipment), currday) > 0 And availtime <
vunloadtime(mode, shsink(shipment)) Then
 currunloadtime = currday + infraassignarray(shsink(shipment), currday)
 currday = currday + 1
 availtime = currday - currunloadtime
 End If
 Loop
 If currunloadtime = starttime + traveltime Then
 correctstarttime = False
 Else
 correctstarttime = True
 currstart = currunloadtime - traveltime
 End If
 If availtime >= vunloadtime(mode, shsink(shipment)) And currunloadtime +
vunloadtime(mode, shsink(shipment)) <= ShDeadline(shipment) + 1 Then
 found = True
 Else

www.manaraa.com

62

 found = False
 End If
End Function

www.manaraa.com

63

 This function searches for the first gap in the vehicle array, for the current vehicle,
capable of carrying a given shipment component. If found, it returns the time at which the
gap is found.

Function findstarttime(VehicAssignArray() As Double, mode As Integer, starttime As
Double, currvehicle As Integer, currstart As Double, shipment As Integer)
 Dim currtime As Double
 Dim currday As Integer
 Dim reqtime As Double
 Dim availtime As Double
 Dim curravailtime As Double
 If ShArrival(shipment) > currstart Then
 currtime = ShArrival(shipment)
 Else
 currtime = currstart
 End If
 currday = Int(currtime)
 reqtime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment))
 Do While availtime < reqtime And currday < latedeadline
 curravailtime = 1
 If 1 - VehicAssignArray(currvehicle, currday) < curravailtime Then
 curravailtime = 1 - VehicAssignArray(currvehicle, currday)
 End If
 If 1 - (currtime - currday) < curravailtime Then
 curravailtime = 1 - (currtime - currday)
 End If
 availtime = availtime + curravailtime
 If VehicAssignArray(currvehicle, currday) > 0 And availtime < reqtime Then
 availtime = 1 - VehicAssignArray(currvehicle, currday)
 currtime = currday + VehicAssignArray(currvehicle, currday)
 End If
 currday = currday + 1
 Loop
 starttime = currtime
 If availtime >= reqtime And starttime + SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + vunloadtime(mode, shsink(shipment)) <
ShDeadline(shipment) + 1 Then
 findstarttime = True
 Else
 findstarttime = False
 End If
End Function

www.manaraa.com

64

This procedure handles the top level of processing for the infrastructure
assignment step. It passes the mode to be assigned to the infraassignstep, which then
performs infrastructure assignment for the specific mode.

Sub InfraArrayGenerator(DeadlineArray() As Integer, DeadlineTracker() As Integer,
infraarray() As Integer, infratracker() As Integer)
 Dim n As Integer
 ReDim infraarray(1 To NumModes, 1 To numshipments)
 ReDim infratracker(1 To NumModes)
 n = 1
 Do While n <= NumModes
 InfraAssignStep DeadlineArray(), DeadlineTracker(), infraarray(), infratracker(), n
 n = n + 1
 Loop
End Sub

www.manaraa.com

65

 This subprocedure handles the process of allocating the shipments to unloading
capacity. If the shipment can be allocated, it is retained for this mode. If no gap can be
found, the algorithm assigns it upwards to the next mode.

Sub InfraAssignStep(DeadlineArray() As Integer, DeadlineTracker() As Integer,
infraarray() As Integer, infratracker() As Integer, currmode As Integer)
 Dim infraassignarray() As Double
 Dim n As Integer
 Dim currarrival As Integer
 Dim i As Integer
 Dim shipment As Integer
 ReDim shtraveltime(1 To numshipments)
 ShDeadline =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2",
Sheets("Shipments").Range("F2").End(xlDown)))
 ShArrival =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2",
Sheets("Shipments").Range("E2").End(xlDown)))
 shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2",
Sheets("Shipments").Range("C2").End(xlDown)))
 populatetraveltime currmode, shtraveltime(), shsink
 n = 1
 latedeadline = 0
 Do While n <= numshipments
 If ShDeadline(n) > latedeadline Then
 latedeadline = ShDeadline(n)
 End If
 If ShArrival(n) > latearrival Then
 latearrival = ShArrival(n)
 End If
 n = n + 1
 Loop
 latedeadline = latedeadline * 2
 ReDim infraassignarray(1 To NumNodes, 1 To latedeadline)
 i = 1
 currarrival = 1
 Do While currarrival <= latearrival
 Do While i <= DeadlineTracker(currmode)
 shipment = DeadlineArray(currmode, i)
 If currarrival = ShArrival(shipment) Then
 found = findspace(shipment, infraassignarray(), shtraveltime(shipment) +
ShArrival(shipment), ShDeadline(shipment), shsink(shipment),
shUnloadTime(currmode, shipment))
 If found = True Or currmode = NumModes Then

www.manaraa.com

66

 allocate ShArrival(shipment) + shtraveltime(shipment), infraassignarray(),
shsink(shipment), shUnloadTime(currmode, shipment)
 infratracker(currmode) = infratracker(currmode) + 1
 infraarray(currmode, infratracker(currmode)) = DeadlineArray(currmode, i)
 found = False
 Else
 DeadlineTracker(currmode + 1) = DeadlineTracker(currmode + 1) + 1
 DeadlineArray(currmode + 1, DeadlineTracker(currmode + 1)) =
DeadlineArray(currmode, i)
 End If
 End If
 i = i + 1
 Loop
 i = 1

 currarrival = currarrival + 1
 Loop
End Sub

www.manaraa.com

67

Calculates the traveltime required for each shipment, for each mode.

Sub populatetraveltime(mode As Integer, traveltime() As Double, sink As Variant)
 Dim n As Integer
 vehiclespeeds =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2",
Sheets("Vehicles").Range("B2").End(xlDown)))
 shsource =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2",
Sheets("Shipments").Range("B2").End(xlDown)))
 n = 1
 Do While n <= numshipments
 traveltime(n) = SimpleNetwork(mode)(shsource(n), sink(n)) / vehiclespeeds(mode)
 n = n + 1
 Loop
 n = 1
End Sub

www.manaraa.com

68

 Calculates the amount of time that a shipment will require on the unload array in
order to be totally unloaded.

Sub populateneededtime(mode As Integer, sink As Variant)
 Dim n As Integer
 Dim infraarray() As Variant
 Dim transfervariable As Variant
 Dim j As Integer
 Dim k As Integer
 ReDim infraarray(1 To NumModes)
 ReDim vunloadtime(1 To NumModes, 1 To NumNodes)
 shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2",
Sheets("Shipments").Range("D2").End(xlDown)))
 j = 1
 Do While j <= NumModes
 With Sheets("Network " & j & " Infra").Range("B2")
 transfervariable = Application.WorksheetFunction.Transpose(Range(.Offset(0, 0),
.End(xlDown)))
 End With
 infraarray(j) = transfervariable
 k = 1
 Do While k <= NumNodes
 vunloadtime(j, k) = vcapacity(mode) / infraarray(j)(k)
 k = k + 1
 Loop
 j = j + 1
 Loop
 n = 1
 Do While n <= numshipments
 shUnloadTime(mode, n) = shsize(n) / infraarray(mode)(sink(n))
 n = n + 1
 Loop
End Sub

www.manaraa.com

69

 Checks the current infrastructure array to find gaps to which a shipment could be
assigned. If it cannot find a gap, returns as false. Otherwise, returns as true.

Function findspace(shipment As Integer, infraassignarray() As Double, startpoint As
Double, deadline As Variant, sink As Variant, neededtime As Double)
 Dim foundtime As Double
 Dim currday As Integer
 currday = Int(startpoint)
 Do While foundtime < neededtime And currday <= deadline
 foundtime = 1 - infraassignarray(sink, currday) + foundtime
 If 1 - (startpoint - currday) < foundtime Then
 foundtime = 1 - (startpoint - currday)
 End If
 currday = currday + 1
 Loop
 If foundtime >= neededtime Then
 findspace = True
 Else
 findspace = False
 End If
End Function

www.manaraa.com

70

 If findspace has found a gap during the infrastructure assignment phase, then the
allocate component will fill in the gap, ensuring against double-booking.

Sub allocate(startpoint As Double, infraassignarray() As Double, sink As Variant,
neededtime As Double)
 Dim remainingtime As Double
 Dim currday As Integer
 Dim transfertime As Double
 currday = Int(startpoint)
 remainingtime = neededtime
 Do While remainingtime > 0
 transfertime = remainingtime
 If transfertime > 1 - infraassignarray(sink, currday) Then
 transfertime = 1 - infraassignarray(sink, currday)
 End If
 If transfertime > currday + 1 - startpoint Then
 transfertime = currday + 1 - startpoint
 End If
 infraassignarray(sink, currday) = infraassignarray(sink, currday) + transfertime
 remainingtime = remainingtime - transfertime
 currday = currday + 1
 Loop
End Sub

www.manaraa.com

71

 This subprocedure populates the majority of the global variables used in later
calculations from the excel sheets used as input.

Sub Popglobals()
 Dim vehicleestimate As Integer
 Dim i As Integer
 Dim mode As Integer
 numshipments = Sheets("Shipments").Range("A1",
Sheets("Shipments").Range("A1").End(xlDown)).Rows.Count - 1
 NumModes = Sheets("Vehicles").Range("A1",
Sheets("Vehicles").Range("A1").End(xlDown)).Rows.Count - 1
 NumNodes = Sheets("Simplified Network 1").Range("A1", Sheets("Simplified
Network 1").Range("A1").End(xlDown)).Rows.Count - 1
 shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2",
Sheets("Shipments").Range("D2").End(xlDown)))
 vcapacity =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("C2",
Sheets("Vehicles").Range("C2").End(xlDown)))
 vehicleestimate = 0
 i = 1
 mode = 1
 ReDim minvehicles(1 To NumModes)
 Do While mode <= NumModes
 Do While i <= numshipments
 If shsize(i) / vcapacity(mode) > 1 Then
 vehicleestimate = vehicleestimate + shsize(i) / vcapacity(mode)
 Else
 vehicleestimate = vehicleestimate + 1
 End If
 i = i + 1
 Loop
 i = 1
 minvehicles(mode) = Int(vehicleestimate * 2)
 mode = mode + 1
 vehicleestimate = 0
 Loop
End Sub

www.manaraa.com

72

 This procedure handles the assignment of shipments to individual modes based
upon their feasibility. DetFeas generates an array of modes, called FeasArray. Each
shipment’s serial corresponds to its cheapest feasible mode, in FeasArray. The shipments
are then assigned to the array corresponding to their cheapest feasible mode.

Sub DeadlineArrayGenerator(shipmentarray() As Integer, NumShipArray As Integer,
DeadlineArray() As Integer, DeadlineTracker() As Integer)
 Dim n As Integer
 Dim mode As Integer
 Dim FeasArray() As Integer
 ReDim DeadlineArray(1 To NumModes, 1 To NumShipArray)
 ReDim DeadlineTracker(1 To NumModes)
 ReDim FeasArray(1 To numshipments)
 n = 1
 DetFeas FeasArray()
 Do While n <= NumShipArray
 mode = FeasArray(shipmentarray(n))
 DeadlineTracker(mode) = DeadlineTracker(mode) + 1
 DeadlineArray(mode, DeadlineTracker(mode)) = shipmentarray(n)
 n = n + 1
 Loop
End Sub

www.manaraa.com

73

 This procedure populates FeasArray so that FeasArray(Shipment Number) will
return the cheapest feasible mode for that shipment.

Sub DetFeas(FeasArray() As Integer)
 Dim shsource As Variant
 Dim shsink As Variant
 Dim ShArrival As Variant
 Dim ShDeadline As Variant
 Dim vehiclespeeds As Variant
 Dim found As Boolean
 Dim n As Integer
 Dim k As Integer
 Dim i As Integer
 ReDim FeasArray(1 To numshipments)
 shsource =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2",
Sheets("Shipments").Range("B2").End(xlDown)))
 shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2",
Sheets("Shipments").Range("C2").End(xlDown)))
 ShArrival =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2",
Sheets("Shipments").Range("E2").End(xlDown)))
 ShDeadline =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2",
Sheets("Shipments").Range("F2").End(xlDown)))
 vehiclespeeds =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2",
Sheets("Vehicles").Range("B2").End(xlDown)))
 i = 1
 Do While i <= NumModes
 populateneededtime i, shsink
 i = i + 1
 Loop
 n = 1
 k = 1
 Do While n <= numshipments
 Do While k < NumModes And found = False
 If SimpleNetwork(k)(shsource(n), shsink(n)) / vehiclespeeds(k) +
shUnloadTime(k, n) <= ShDeadline(n) - ShArrival(n) + 1 Then
 found = True
 FeasArray(n) = k
 End If
 k = k + 1
 Loop
 If found = False Then

www.manaraa.com

74

 FeasArray(n) = k
 End If
 found = False
 k = 1
 n = n + 1
 Loop
End Sub

www.manaraa.com

75

 It is assumed that Dijkstra’s will only be run once, while the Heuristic Scheduler
may be run many times. As a consequence, the simplification of the network outputs to
Excel. This algorithm converts the output of the Dijkstra’s component into arrays, for the
Heuristic Scheduler to use internally.

Sub PopulateSimpleNetwork() 'This converts the simple networks generated by Dijkstras
algorithm into arrays, for speed.
 Dim i As Integer
 Dim transfervariable() As Variant
 ReDim SimpleNetwork(1 To NumModes)
 i = 1
 Do While i <= NumModes
 With Sheets("Simplified Network " & i).Range("B2")
 transfervariable = Range(.Offset(0, 0), .End(xlDown).End(xlToRight))
 End With
 SimpleNetwork(i) = transfervariable()
 i = i + 1
 Loop
End Sub

www.manaraa.com

76

Bibliography

Dantzig, G. B., and J. H. Ramser. (1959). "The Truck Dispatching Problem."
Management Science 6.1: 80-91. Print.

LaPorte, Gilbert. (2009). "Fifty Years of Vehicle Routing." Transportation
Science 43.4: 408-16. Print.

Lu, Quan, and Maged Dessouky. (2004). "An Exact Algorithm for the Multiple
Vehicle Pickup and Delivery Problem." Transportation Science 38.4: 503-14.
Print.

Moccia, Luigi, Jean-Francois Cordeau, Gilbert Laporte, Stefan Ropke, and Maria
Valentini. Modeling and Solving a Multimodal Routing Problem With
Timetables and Time Windows. Tech. Dipartimento Di Elettronica,
Informatica e Sistemistica, Università Della Calabria, n.d. Web. 20 Nov.
2012. <http://www.diku.dk/~sropke/>.

Psaraftis, H. N. (1983). "An Exact Algorithm for the Single Vehicle Many-to-Many
Dial-A-Ride Problem with Time Windows." Transportation Science 17.3:
351-57. Print.

Psaraftis, Harilaos. (1980). "A Dynamic Programming Approach to the Single-
Vehicle, Many-to-Many Immediate Request Dial-a-Ride Problem."
Transportation Science 14: 130-54. Print.

Savelsbergh, M. W. P., and M. Sol. (1995). "The General Pickup and Delivery
Problem." Transportation Science 29.1: 17-29. Print.

Sexton, T. R., and L. D. Bodin. (1985). "Optimizing Single Vehicle Many-to-Many
Operations with Desired Delivery Times: I. Scheduling." Transportation
Science 19.4: 378-435. Print.

Verma, Sushil, and Maged Dessouky. (1999). "Multistage Hybrid Flowshop
Scheduling with Identical Jobs and Uniform Parallel Machines." Journal of
Scheduling 2.3: 135-50. Print.

Wagner, Harvey M. (1959). "An Integer Linear-programming Model for Machine
Scheduling." Naval Research Logistics Quarterly 6.2: 131-40. Print.

www.manaraa.com

77

	Vehicle Minimization for the Multimodal Pickup and Delivery Problem with Time Windows
	Recommended Citation

	Abstract
	Acknowledgements
	I. Introduction
	The General Problem
	Algorithm Overview
	Scope of Research
	Issues, Needs, and Limitations
	Research Organization

	II. Literature Review
	Chapter Overview
	Vehicle Routing Problem Overview
	Dial-A-Ride Problem Summary
	Dial-A-Ride Problem Solution Techniques
	Dial-A-Ride Discussion Summary
	Q-Machine Scheduling Summary
	Q-Machine Scheduling Heuristics
	Q-Machine Scheduling Summary
	Pragmatic Instance Summary
	Chapter Review

	III. Methodology
	Broad Analysis of the Algorithm
	Data Inputs
	Dijkstra’s Algorithm
	Scheduling Heuristic Overview
	Scheduling Heuristic Inputs
	Deadline Assignment
	Infrastructure Assignment
	Vehicle Assignment
	Correction Step

	IV. Results and Analysis
	Simple Test Case
	Modified Simple Case
	Multinodal, Multimodal Demonstration Case
	Multimodal Large Scale Case

	V. Conclusions
	Summary
	Future Research

	Appendix A: Shortest Path Network Generator
	Appendix B: Ordered Scheduling Heuristic
	Bibliography

