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AFIT-ENS-13-M-03 

Abstract 

 

This thesis develops an algorithm to address a special case of the Vehicle Routing 

Problem. The algorithm developed is decompositional with two components. The first 

component is based upon Dijkstra’s algorithm and is used to simplify the routing 

component of processing. The second component is based upon the priority rule 

heuristics used in scheduling job shop problems for parallel machines. 

The VRP solved is subject to time windows and capacity constraints on vehicles 

and offloading. The VRP is multimodal. The objective function for the problem is the 

sum of all vehicles used, multiplied by their respective cost modifiers. Shipments are 

required to travel entirely on a single mode.  

The data input consists of a network and shipping requirements. The network is 

subjected to Dijkstra’s. Dijkstra’s returns a simplified network of shortest paths. This 

simplified network, along with the shipping requirements, is subjected to the scheduling 

heuristic. The heuristic assigns as many of the shipments as possible away from the 

currently minimizing mode. This determines which shipments must be processed on the 

minimizing mode. It determines how many vehicles are required to carry those 

shipments. Finally, any remaining capacity is assigned. This process is repeated for each 

mode.  
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VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY 

PROBLEM WITH TIME WINDOWS 

 

I. Introduction 

 

The General Problem 

 The algorithm developed here addresses a special case of the Vehicle Routing 

Problem (VRP). The VRP considered is multimodal with time constraints. It is also 

subject to capacity constraints, both on individual vehicles and on offloading at each 

node. This makes the problem broadly equivalent to the general formulation of the 

M++RP, or multimodal multicapacitated vehicle routing problem.  However, the 

objective function used is based upon the total numbers of vehicles of each type used. 

Consequently, the problem can also be considered to be a special case of the Fleet Size 

and Mix Problem (FSMP). 

 The primary issue in solving any VRP is computational complexity. This is even 

more true when addressing the M++RP, or the FSMP. The computational complexity is 

exacerbated by the size of the problem and by the number of options available. It is not 

reduced by the constraints. In fact, the constraints may increase the computational 
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complexity of the problem. The constraints may cause this issue by creating interference 

between the shipments in their processing at specific locations or on specific vehicles. 

 The FSMP has three specific issues related to computational complexity, which 

substantially expand the problem. Firstly, the FSMP does not directly allow for tradeoff-

costing, either between particular days or between vehicle types. We concern ourselves 

with the total number of vehicles used and not with the vehicles used on any particular 

day. Because of this, vehicles can be considered ‘free’ with respect to the objective 

function except if their assignment would cause more vehicles to be required. It is not 

always possible to infer directly how the assignment of one vehicle might affect the 

assignment of later vehicles. Because of this, the costs of assigning vehicles are generally 

unavailable, directly, until the latter parts of the assignment. 

 Secondly, in the FSMP, we do not know the number of vehicles available for any 

given mode. This makes capacitating flow on any given mode difficult. It also makes it 

difficult to determine the limitations on the number of shipments any given mode is 

capable of carrying. Without knowing what a certain mode can carry, it is difficult to 

determine what the other modes must carry. 

 Thirdly, the FSMP generally requires multiple iterations to solve. We are seeking 

the feasible solution using the fewest vehicles. The intuitive approach to this solution is 

to determine a number of vehicles which is obviously sufficient. We could then reduce 

the number of vehicles, checking to ensure feasibility with each reduction. This is 

functional because it allows the determination of each mode’s capacity interactively with 

the other modes. All methods of solution must somehow take this process into account. 
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Generally, this means correcting an original solution, which of course requires many 

solutions of the VRP for a single FSMP solution. 

 

Algorithm Overview 

 The algorithm developed in this thesis is decompositional. A diagram of the 

algorithm can be seen in Figure 1.  It handles the TPFDD by splitting it into two data-

components. The first data component is the network, which is processed by Dijkstra’s 

algorithm.  Dijkstra’s returns a simplified version of this network. The second data 

component is the shipping requirements. The shipping requirements and network are then 

used as inputs for the second part of the algorithm. This part of the algorithm is the 

iterative scheduling heuristic. It efficiently allocates the shipments included in the 

shipping requirements to vehicles associated with paths on the simplified network. This 

assignment is made so as not to violate any of the constraints associated with the 

network, vehicles, or shipments. 

 

Figure 1. Overview of Algorithm 
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 Dijkstra’s algorithm is well-researched, very fast, and very reliable. In this 

instance it has only a small, conventional role. It seeks out the shortest path from each 

node included in the original network to each other node included in the original network. 

If we assume that the shortest paths are the best paths to use, we may use these paths in 

place of a full routing algorithm. While the paths are unlikely to be ideal, they 

approximate the ideal.  

 The second component of the algorithm is the iterative scheduling heuristic 

mentioned above. It iterates once for each mode. First, it determines the cheapest mode 

which is capable of carrying each shipment. At this stage, the algorithm assumes that the 

shipment is immediately loaded onto the mode on arrival, and when delivered, unloading 

capacity is immediately available. After this stage, the algorithm determines whether the 

number of shipments assigned to each mode is too great to be handled by the unloading 

capacity of that mode. Any excess shipments are moved to a higher-cost mode. 

 Finally, the number of vehicles required to carry any shipments assigned to the 

most expensive mode is determined. Then, any excess capacity is used to deliver 

shipments which were previously assigned to a cheaper mode. Any shipments which are 

assigned to the most expensive mode are eliminated from the overall shipment list. The 

process then repeats, disincluding the newly minimized mode. In the next iteration, the 

reduced shipment list is used. 

 

Scope of Research 

 The purpose of this research is to develop an algorithm capable of solving a large 

instance of the multi-modal FSMP. The algorithm will emphasize deadlines and arrival 
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dates as priority constraints in its solution. It will minimize vehicles in order of cost, 

ensuring that the most expensive vehicles receive priority. Each shipment will be shipped 

entirely on a single mode. Real-world aspects of the problem which are included in this 

solution include vehicle and offloading capacity and variation in path lengths. 

 

Issues, Needs, and Limitations 

 The research is limited by its inability to model the real world with precision. 

Many constraints are applicable to the real-world problem but beyond the scope of the 

algorithm. This is generally due to added computational complexity. As a consequence, 

the results given by the algorithm can only provide a guide to the number of vehicles 

ultimately required for any given TPFDD and network. 

 A major limitation of the system as it stands is the removal of constraints 

regarding which modes can carry certain shipments. Certain shipments, according to a 

TPFDD, are locked into a particular transportation type. This algorithm does not allow 

for such limitations, but instead assumes that all shipments can, at least theoretically, be 

carried by any mode. 

 Another major limitation is the lack of multimodal solutions that is apparent in the 

algorithm. Due to simplifying steps taken early in processing, the algorithm cannot 

address the possibility of efficient or effective multimodal solutions. However, it is likely 

that such solutions can be generated by slight modifications to the final solution set, as 

with a genetic algorithm or Tabu search. 
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Research Organization 

 This chapter describes the general problem and the algorithm proposed in this 

research in general terms. It then continues with a discussion of the scope of the research 

itself, as well as the limitations of the algorithm and the research. Chapter II describes the 

background of the Vehicle Routing Problem (VRP), emphasizing the Dial-A-Ride 

Problem (DARP) and the Multimodal Multicapacitated Routing Problem (M++RP) as 

special cases. It continues with a discussion of solution techniques for the DARP. 

Afterward, it discusses the Q-machine scheduling problem, and techniques which are 

used in solving Q-machine scheduling problems. Finally, it discusses the pragmatic 

instance studied in this research. Chapter III presents the algorithm in detail. It begins 

with an overview of the algorithm. It continues by discussing Dijkstra’s algorithm, and its 

role in the algorithm. Then it discusses the scheduling heuristic. As part of its discussion 

of the scheduling heuristic, it first covers the deadline and infrastructure assignment 

steps, and then covers the vehicle assignment step, ending with the correction step. 

Chapter IV presents four data sets which are used to test the algorithm. The first data set 

discussed is a simple data set used as a demonstration. The second data set examined 

extends the first case to multiple modes. The third data set is a modification of the 

second, intended to highlight the algorithm’s reactions to infeasibility. The fourth data set 

is a stress test of 500 shipments, to show the speed of the algorithm. Finally, Chapter V 

provides an overview of the efficacy and drawbacks of the algorithm, the conclusions of 

the research, and suggestions for further research. 
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II. Literature Review 

 

Chapter Overview 

 The problem being reviewed in this research is a special case of the Dial-A-Ride 

problem, itself a special case of the Vehicle Routing Problem, the M++RP (Moccia et al, 

2008) The Dial-A-Ride problem is a subset of the general pick-up and delivery problem, 

as defined in Savelsbergh and Sol’s “The General Pick-up and Delivery Problem” 

(Savelsbergh et al, 2005) but the pickup and delivery problem is itself a refinement of the 

“Truck Dispatching Problem” originally proposed by Dantzig and Ramser in their 

eponymous paper. (Dantzig, 1959) 

 The Vehicle Routing Problem has received a great deal of attention over the 

years, but the particular refinement being dealt with in this paper is substantially less 

studied. In particular, the M++RP deals with multi-modal, multi-time constraints, and 

multiple capacity constraints, in addition to the constraints more usually associated with 

the VRP, but without depots. (Moccia, 2008: 2) 

 The problem can, however, also be approached as a special case of the sequential 

machine scheduling problem for non-homogenous machines, or the Q-machine 

scheduling problem. While the problem can be viewed as such, the more interesting 

applications of Q-machine techniques for this problem relate to the use of the Q-machine 

methods for solving the ‘scheduling’ component of a decomposed problem, and so that is 

where our study will focus. 
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 This chapter will first review the Vehicle Routing problem solution techniques.  It 

emphasizes the state of exact algorithmic solutions, and the decomposition and heuristic 

mixed methods for achieving large-scale near-optimal solutions.  It also discusses the 

difficulty of achieving a reasonably accurate solution in a short time-scale on a problem 

with such great computational complexity. Then we review the techniques used in Q-

machine scheduling as approaches to the solution of the decomposed problem. 

 

Vehicle Routing Problem Overview 

 The vehicle routing problem is the problem consisting of finding an optimal route 

for either one or multiple vehicles between multiple locations, each of which will 

generally place a load on the vehicles, to be transported to a second location. This second 

location may be the depot of the truck, in simpler problems, but is often a delivery 

location. In this case, the problem becomes the Vehicle Pick-up and Delivery problem; 

more specifically, the problem may be constrained to require that the pick-ups and 

deliveries occur according to a certain schedule, in which case the problem becomes the 

Vehicle Pick-up and Delivery Problem with Time Windows. 

 

Dial-A-Ride Problem Summary 

 The most studied problem class which closely resembles the one discussed in this 

paper is known generally as the ‘Dial-A-Ride’ Problem. The Dial-A-Ride problem is a 

special case of the Vehicle Pick-Up and Delivery Problem with Time Windows, with 

vehicles operating from and returning to an established depot.  The problem is subject to 
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vehicle capacity constraints and constraints on the maximum amount of time a customer 

may ride in the vehicle.  

 The Dial-A-Ride problem differs from the studied problem in several particulars. 

The first is that the Dial-A-Ride problem does not generally have to deal with 

infrastructure constraints on loading or offloading of shipments. This allows the problem 

to be simplified in significant ways.  First, a node occupied by a vehicle’s unloading  is 

unusable to other vehicles from other paths. The vehicles, however, may interfere with 

one another if the capacity constraints on the arcs are used to create that effect. The 

second is that the Dial-A-Ride problem generally deals with homogeneous vehicles, 

rather than the multimodal approach required in dealing with the studied problem. This 

creates additional computational complexity, for two reasons. The first is that the various 

vehicles can be traded off, one against the other, providing another aspect of complexity, 

rather than simply requiring the addition of more homogeneous vehicles (as in the Dial-

A-Ride problem).  The second constraint is that the path from any given node to any 

other node is unique in the Dial-A-Ride problem, as generally understood, rather than 

having different distances and speeds for different modes. Finally, perhaps the biggest 

difference between the Dial-A-Ride problem and the problem studied here is the problem 

of scale. The Dial-A-Ride problem generally deals in vehicles which are each capable of 

handling multiple loads, whereas the problem studied here generally deals in loads which 

will require multiple vehicles. Hence, in the Dial-A-Ride problem, the core issue is 

ensuring that the vehicles waste as little travel time as possible in getting as many loads 

as possible to as many locations as possible. For the studied problem, the emphasis must 

be on ensuring that the correct vehicles travel to the correct locations at the correct times, 
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so as to prevent conflicts, and most importantly ship them efficiently and cheaply. 

Finally, the Dial-A-Ride problem is often solved for a single vehicle, rather than for 

multiple vehicles. While the Dial-A-Ride problem can be extended easily from a single-

vehicle technique to a multi-vehicle solution under many circumstances, the particulars of 

the M++RP make it ineffective to extend from a single vehicle solution to multi-vehicles, 

especially since the particular problem being studied has as one of its primary objective 

function the use of minimum numbers of vehicles of each type. 

 

Dial-A-Ride Problem Solution Techniques 

The Dial-A-Ride problem is computationally complex, but also very fragile.  The 

number of variables involved means that the cost of accurate solutions to large-scale 

problems is often prohibitively high, and instead heuristic models must be used. 

Nonetheless, exact solutions can and have been found for smaller problems. There has 

also been significant research into the extension of exact solution techniques for problems 

after decomposition or alteration. However, the most interesting part of these techniques, 

for our purposes, is the development of decomposition and simplifying techniques to be 

used in conjunction with heuristics. For the Dial-A-Ride problem, it is often possible to 

simplify the problem to the point where an exact solution to the problem becomes 

feasible, even if the problem loses some fidelity in the process; for the M++RP problem, 

and more specifically, for the pragmatic instance of the M++RP problem being studied in 

this paper, simple decomposition will not result in an exactly solvable set of problems.  

In 2004, Lu and Dessouky demonstrated a method for efficient generation of exact 

solutions to the Dial-A-Ride problem. The method was reliant upon an integer 
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programming formulation of the problem, which was then solved using a simple branch 

and bound technique. It solved a problem consisting of 5 vehicles and 17 customers in 

less than three hours.  This demonstrates the complexity of the problem, since using only 

5 vehicles and 17 customers generated that level of computational demand. The 

advantage of Lu and Dessouky’s innovation was that it added a level of softness to 

calculations regarding time and capacity constraints; however, even with these significant 

changes to the fundamental paradigm, the algorithm produced a relatively time-costly 

solution to a relatively small problem. (Lu et al, 2004) 

 Psaraftis (Psaraftis et al, 1980, 1983) demonstrated an exact algorithm for the 

solution of the Dial-A-Ride problem in Transportation Science, dealing with multiple 

vehicles. His technique provides an exact solution, using a dynamic programming 

algorithm, which efficiently and effectively calculated the best method for dispatching 

the vehicles, including route and schedule. Originally, Psaraftis developed the technique 

for a fairly simple variant, involving only one vehicle, but it was eventually extended to 

fairly complicated multi-vehicle variants, including time constraints. The downside of 

Psaraftis’ approach is that it only optimizes with respect to total distance travelled. While 

total distance travelled is of a certain commercial interest, it is effectively irrelevant to 

our particular problem because of the scaling issue. In our problem, distance travelled is a 

concern secondary to our primary goal- as we know, ultimately, that our vehicles must 

travel from pickup to delivery, and then to pickup, rather than the interchanging sequence 

possible in the generic Dial-A-Ride problem. Equally, Psaraftis’ solution does not 

address the problem of total vehicle number, which is what our algorithm is ultimately 

designed to address.  
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 More useful to us in this instance is the generation of large-scale solutions to the 

Dial-A-Ride problem, which generally involves a heuristic approach. In most cases, the 

approach consists of a simplifying step, followed by an algorithm which approximates 

solutions to the reduced problem. In simpler cases, the problem is simply reduced directly 

using an analytical approach as in the generation of lower and upper bounds, and then 

solved exactly, or very closely. In large scale cases, the problem is decomposed and then 

approached with a heuristic technique, which provides a lower-quality but equally lower-

cost solution to the problem, and is often the only feasible approach to such a problem. 

 Baldacci et al (Baldacci, 2011) begin by generating a specialized integer 

formulation of the problem, and then the dual of that form. They then use two heuristics 

in conjunction to achieve a near-optimal resolution of the dual, which in turn they use to 

determine which paths meet certain lower-bound and upper-bound criteria. They then 

remove all paths which are outside these bounds, and solve the reduced problem using an 

integer programming technique, or if the problem remains too large, attempt to resolve 

the size disparity using branch-and-bound techniques.  

Sexton et al (Sexton, 1985) relied on Bender’s decomposition, separating the problem 

into a ‘routing’ component and a ‘scheduling’ component, and then solving with a 

heuristic. This technique is very efficient for the resolution of the Dial-a-Ride problem, 

because the paths are effectively independent of scheduling. If one can determine which 

paths are most efficient, then the problem should nearly always solve optimally subject to 

those paths, which allows for a drastic reduction in the complexity of the problem.  

 While these decompositional techniques are effective in resolving some of the 

computational complexity of the problem, the decomposed problems remain very 
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complex. Even after decomposition of the problem, we are left with a routing component 

equivalent to solving the shortest path problem for each of the customers, and a 

scheduling problem for parallel machines. While this technique is reasonable for 

resolving a problem involving only a few nodes, arcs, customers, and vehicles, handling 

the problem becomes substantially more difficult at larger scales. 

 An approach to multi-modality for a flexible number of vehicles was developed 

by Moccia et al (Moccia, 2008), and focused upon the use of column generation 

heuristics. In this case, the formulation of the problem used ‘virtual networks’ to 

represent multimodal shipment transfers, developing false links with associated cost 

functions and time costs to represent the price of transferring from one mode to another at 

a given linkage. This methodology results in a reasonable solution for relatively large 

variants of the VRP. However, the algorithm used in the paper could only handle a 

relatively small system, though with great fidelity. 

 

Dial-A-Ride Discussion Summary 

 Solutions to the Dial-A-Ride problem are very rarely exact, depending instead on 

heuristic algorithms, often combined with decomposition, to solve even relatively simple 

problems. This is partly due to the limitations imposed by integer programming 

formulation, which the majority of the techniques use as a beginning for their solution. 

Any integer programming formulation must address tens of thousands, or even hundreds 

of thousands of variables, addressing which path, if any, each vehicle must be on at 

which hour of which day, carrying what load. By extension, almost any solution to a 

large-scale Dial-A-Ride problem relies on a simplifying step, followed by powerful 
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heuristics- and even so, will generally provide only a relatively slow solution to a 

relatively small problem. 

 For more details on the history of methodologies for studying the Vehicle Routing 

Problem, readers are recommended to Fifty Years of Vehicle Routing (Laporte, 2009) in 

the 43rd issue of Transportation Science. 

 

Q-Machine Scheduling Summary 

 One approach to the M++RP problem is to reduce it to a scheduling component 

and a routing component. Once the shortest routes have been determined, the problem 

can then be handled as a scheduling problem, treating each of the modes for each path as 

a machine, with the vehicles treated as a global resource shared between the machines.  

 The transformation of the problem to a Q-machine scheduling problem reduces 

the complexity of scheduling significantly, but we are left with a computationally 

demanding problem nonetheless. At this stage, integer formulation of the resulting 

problem becomes more feasible and extensible to very small variants of the problem 

(Wagner, 1959) but the establishment of a more effective heuristic technique remains 

necessary for moderate to large scale scheduling problems. (Verma, 1999) In many cases, 

the most efficient method remains a scheduling ‘rule,’ modified as necessary by 

evolutionary algorithmic techniques to improve upon the initial  high quality solution. 

Because of the issues of interference between various shipments, even a minor shift in the 

location of a single shipment can have major cascading effects on the efficacy of the 

solution as a whole. This is particularly true as the chosen metric, number of vehicles 
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used, is dependent upon peak usage across the various vehicles, not upon the total usage 

of each vehicle type. 

 

Q-Machine Scheduling Heuristics 

 The simplified form of the M++RP that we are solving in this instance is 

equivalent to solving , or the parallel machine scheduling problem with 

machines with non-equal speeds, which are not dependent on the specific job, with setup 

times, in order to minimize tardiness, and then modifying that schedule in order to 

minimize m, while holding the previous objective value static. This variant of the 

problem has seen significant research because of its industrial significance, and 

consequently, many algorithms have been developed and applied to the problem. 

However, extending an exact solution to large instances of the problem remains elusive. 

 Most solutions to the formulation for large problems rely upon a prioritization 

heuristic, but unfortunately no single index appropriately addresses , and even if it 

did, the flexible nature of the number of machines means that while we could solve for 

weighted tardiness, we would not be able to prioritize reduction of machines; priority 

rules by definition assign a job to the first free machine, rather than attempting to reduce 

total machine numbers.  

For  specifically, priority rules are difficult to implement because of the 

complex nature of allocation. No specific variable, ratio, or difference can provide an 

efficient and effective index in all instances. Instead, the Apparent Tardiness Cost with 

Setups (ATCS) prioritization rule was developed, as a combination of all of the factors 
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which might cause a particular job to be the priority job for a particular freed machine, 

weighted dependent on the particular characteristics of the machines and jobs. 

 The ATCS is one heuristic which has been developed to handle . 

The ATCS calculates an index based upon the processing time, setup time, objective 

weights, due date tightness and range factors, and the severity of the setup time. When a 

job is completed, the job with the next highest index is assigned. The Apparent Tardiness 

Cost with Setups is very efficient at handling large scale problems, and is equally very 

effective at generating an optimal or near-optimal solution. However, the ATCS does not 

effectively handle the in-parallel nature of the infrastructure constraints which are to be 

dealt with in the current problem, simply because those constraints are not factored into 

its system, and requires as part of its algorithmic structure the existence of a defined 

number of vehicles. Regardless, the ATCS is a very efficient approach to the large scale 

problems being handled in this instance for minimization of weighted tardiness. It is 

worth noting that in the seminal paper on the topic, Lee (Lee et al, 1997) used a 

corrective simulated annealing technique to improve on the value of his final solution, 

relying on the ATCS rule only to generate a feasible high quality initial solution.  

 Beyond the constructive algorithms designed to generate a feasible and near-

optimal solution, we find refining algorithms designed to improve on an existing 

schedule. These techniques generally apply a local search heuristic, moving from one 

good solution to similar solutions stepwise. Two of the most commonly used heuristics in 

this role are Simulated Annealing and Tabu Search, each of which searches locally for 

improvements to the currently generated schedule.  
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 Simulated Annealing techniques depend upon a large number of solutions, which 

are randomly traded for other ‘nearby’ solutions. Better solutions are generally preferred, 

and as the algorithm progresses, the preference for better solutions increases, until the 

algorithm is simply stepping to the local optimum. Similarly, Tabu search allows for an 

algorithm to pass into infeasible territory, if the objective function can be improved by 

doing so, by providing a penalty function associated with the infeasibility. As the 

algorithm progresses, it increases the penalty to achieve an effective hard feasibility.  

  

Q-Machine Scheduling Summary 

 The solutions to Q-Machine scheduling expose us to the idea of prioritization 

rules which allow for the solution of the problem for particular objective functions. These 

methods are not effective for solution subject to the specific criteria of vehicle 

minimization, but they provide a starting place for the development of our own rules and 

solution index. 

 Simulated annealing and the Tabu search show us the next potential stage of the 

development of the research, which is to develop a refining algorithm. Tabu search, 

simulated annealing or evolutionary algorithms can be used to refine the solution into a 

specific high quality solution. The difficulty in implementing such a solution lies in the 

complexity of handling hundreds or thousands of large scale solutions to the problem. 

Without those, the refinement the heuristics can provide is minimal; with them, the 

algorithm becomes cumbersome. 
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Pragmatic Instance Summary 

 In this research, the particular problem we are studying is the M++RP problem, at 

large scales. The particular instance of the problem which is being discussed which we 

are using as a pragmatic instance of our general problem is a Time Phased Force 

Deployment Data, or TPFDD. A TPFDD consists of a large number of transportation 

requirements, from a number of sources to a number of sinks, across a defined network. 

The development of transportation requirements and vehicle numbers required to move 

them is an interactive multi-stage process, as the number of vehicles themselves 

necessitate infrastructure and movement capacity at the vehicle level. According to 

Clausewitz’ Principles of War, “The provisioning of troops, no matter how it is done, 

whether through storehouses or requisitions, always presents such difficulty that it must 

have a decisive influence on the choice of operations.” 

 As a consequence, it is of particular importance to be able to quickly generate 

reasonable estimates as to the number of vehicles of various types required to execute a 

TPFDD, as generating these estimates will most likely be required multiple times, in a 

feedback process with both analysts and decision-makers. However, a TPFDD is 

remarkably large; as many as ten thousand transportation requirements (customers), 

across a network of as many as several hundred nodes, with multiple modalities, over the 

course of weeks or even months, subject to constraints on earliest and latest arrival, as 

well as to constraints on infrastructure for offloading that will be available, and 

potentially to many other over-riding constraints which are beyond the scope of this 

model. 
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 It is a priority in all strategic situations to ensure that all deadlines and earliest 

arrival dates are met, subject to feasibility; the number of vehicles used is secondary to 

the accomplishment of the purpose behind the TPFDD, which may rely on any particular 

requirement. For this reason, the algorithm generated here must prioritize that all 

deadlines are met and only as a secondary concern handle the vehicle minimization 

techniques. 

  With that caveat, the solution of a vehicle minimization problem requires a 

complete solution for the problem including vehicle allocations and paths, because of the 

interaction of infrastructure capacity requirements. Because of this, and because any 

given solution will tend to depend on the number of vehicles available, the problem must 

be solved multiple times during any particular attempt to minimize the vehicle numbers. 

At the very least it must be solved once for each mode. This places an even higher 

priority upon high processing speed than was already necessitated by the size of the 

problem and the requirement for interactive feedback. 

 In the particular problem being studied it is noteworthy that the shipments will 

nearly always require multiple vehicles to carry; this allows for certain simplifications 

and changes of emphasis in the details of our algorithm. It is also worth noting that since 

the particular scope of the TPFDD is in-theater, in our application we are unlikely to find 

a solution that requires transshipment from one mode to another; instead, despite the 

multi-modal nature of the problem, we may with reasonable safety confine ourselves to 

the use of single modes for the duration of the trip, assuming the cost and availability of 

transshipment to be prohibitive. 
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Chapter Review 

 Our final summary concludes that the particular computational complexity of the 

large scale M++RP requires an approach which is computationally simple, as in the Q-

Machine scheduling priority rules, applied to a simplified problem generated according to 

the decompositional rules used for smaller Vehicle Routing Problems. With the 

combination of these two techniques, we can drastically reduce the calculation time 

required for the generation of a feasible solution, without sacrificing unduly the 

optimality of our solution. The interactivity of our pragmatic instance specifically 

encourages this, as the solutions are intended as springboards for analytical thought, 

rather than implementable final answers.  

 With this sort of rough-cut approach to a problem of this computational 

complexity, the emphasis must be placed upon reducing the processing time required to 

handle the problem. Without careful management of processing time, we run the risk of 

an impractical or impossible technique, which will fail to generate the timely, effective 

solutions required. 

 For this reason, our ultimate implementation relies upon a series of priority rules, 

applied in careful order to the shipments, and solved in a specific order in order to 

preserve feasibility, while minimizing vehicle number requirements. 
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III.  Methodology 

 

Broad Analysis of the Algorithm 

 At the highest level, the algorithm consists of three major steps. First, the 

incoming data is separated into a network component and a shipping requirements 

component. Second, the network component is processed using Dijkstra’s algorithm, to 

create a network of shortest paths. Finally, the scheduling heuristic assigns the shipping 

requirements to the simplified network at need. This organizational hierarchy will serve 

as the structure for this chapter, as we follow the flow of data processing throughout the 

algorithm. 

 

Data Inputs 

 The algorithm requires three different major data components. The first of these 

components is the network itself. The network is composed of a series of nodes, with 

associated distances between them, and a value for the daily unloading capacity of the 

nodes in the units which are later used for shipment weight. Each of these distances and 

unloading capacities must be defined for each mode. In the case of a node-node pairing 

which cannot be travelled by a specific mode, it is possible to assign a ‘big M’ value for 

the transportation distance in order to force the shipment onto a higher-cost, but feasible, 

mode of transport. However, doing so can only cause the algorithm to transfer the 

shipments upward in cost. 
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 The second component of data required is vehicle information. The algorithm 

requires data on vehicle speed, capacity, and the number of modes. This must parallel the 

number of parallel modal networks provided. These data are used throughout the 

algorithm. Speed, particularly, is used in all three major components of the scheduling 

heuristic, either directly or indirectly. 

 The third component of data is shipping requirements. Shipping requirements are 

stored as a series of lists. Instead of directly manipulating the data associated with the 

shipment, the algorithm uses the number of the shipment as a serial. Moving only integer 

values significantly reduces the time required to sort and generate lists. 

 

Dijkstra’s Algorithm 

 Dijkstra’s algorithm is used in place of a more complicated routing solver in order 

to approximate the ideal routes for vehicles. The shortest paths generated by Dijkstra’s 

are good approximations if the vehicles are generally required to return to their depot 

after delivery to only one site. If this is held to be so, the routing problem becomes 

generally the problem of travelling from point A to point B to point A as efficiently as 

possible. This is equivalent to the shortest path problem. The implementation of 

Dijkstra’s algorithm in this research is illustrated below in Figure 2. 
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Figure 2. Dijkstra’s Algorithm 

 Dijkstra’s algorithm is a very efficient algorithm for solving the shortest path 

problem, provided that the distance desired is from each node in a network to each other 

node in the same network. It works by expanding upon paths of known distances and 

tracking the shortest path discovered to each node. At each step, it advances to the next 

nearest node to the origin node. It records any nodes for which the shortest known path is 

longer than the distance to the current node from the origin node, plus the distance from 

the current node to the observed node. It then corrects their distances down to the newly 

discovered shortest path. Finally, it advances to the node which is the next closest to the 

origin node, after the currently selected node. 

Scheduling Heuristic Overview 

 The scheduling heuristic used in this algorithm is ultimately the core of the entire 

procedure. Dijkstra’s algorithm can be viewed as a pre-processing stage that puts the 

input into a form conducive to the use of the scheduling heuristic. The scheduling 

heuristic bears special attention, especially as it comprises the majority of the complexity 

of the algorithm as well as the key part of its function. 
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 The scheduling heuristic, as shown in Figure 3, has four key parts; these are: 

Deadline Assignment, Infrastructure Assignment, Vehicle Assignment, and the 

Correction Step. Deadline Assignment and Infrastructure Assignment can be viewed as 

pre-processing steps, Vehicle Assignment as the core step, and the Correction Step as a 

post-processing method. However, each of these steps will be iterated once for each 

mode, as the overall heuristic determines the minimum number of vehicles required for 

only one mode at a time.  

 

Figure 3. Scheduling Heuristic Overview 

 

Scheduling Heuristic Inputs 

 The inputs for the scheduling heuristic have two sources. The first is Dijkstra’s 

algorithm, mentioned above, which provides us with a simplified network of shortest 

paths for use in the calculation of distances throughout the heuristic. The second is the 
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shipping requirements component of the original data, which is passed on in the form of a 

list of shipment numbers and a series of associated lists detailing arrival date, shipment 

size, and deadline, all accessible using the shipment number as a serial. The algorithm 

also acquires the vehicle data directly from the original listing. 

Deadline Assignment 

 Deadline analysis is the simplest of the four stages of the scheduling heuristic, and 

the quickest. In deadline analysis, each of the shipments has a time-available value 

calculated, which is simply the difference between arrival date for the shipment and the 

deadline date. This is the amount of time that a shipment is available for shipping. We 

compare this value to the speed of each mode and the distance for that mode between the 

source and sink for the shipment, then, add the amount of time required to unload the 

shipment. A mode for which distance/speed plus unload time is greater than the time 

available certainly cannot carry a given shipment. As a consequence, we know that the 

shipment must be moved higher in cost- to a faster mode. 

 Deadline analysis serves two functions simultaneously. First, it ensures that 

shipments which would be required to run on a more expensive mode for reasons of 

available time are assigned upwards earlier. This saves the time of calculating that they 

must be pushed up during the more computationally intensive infrastructure assignment 

stage. Second, it ensures that these shipments cannot cause other shipments to be forced 

upwards during the infrastructure stage. 

 When a shipment’s cheapest potentially feasible mode has been determined by the 

deadline function, it is assigned to a list associated with that mode. There is a list for each 
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mode at the end of the deadline stage and each shipment will be in one, and only one, of 

those lists. These lists form the input for the Infrastructure Assignment stage of the 

algorithm. 

 

Infrastructure Assignment 

 Infrastructure Assignment can be viewed as another preprocessing stage of the 

algorithm. However, it is also fair to consider the Infrastructure Assignment stage as the 

stage of the algorithm wherein the unloading constraints are taken into consideration. 

While unloading is considered at the Vehicle Assignment stage as well, it is at this stage 

that it is most likely to cause a shipment to be moved or bumped from a mode, as 

opposed to simply forcing rescheduling. In other words, this is the stage where overall 

capacity of infrastructure unloading is taken into account. 

 This is achieved using a 2-dimensional array. Because we handle each mode 

separately, it is not necessary to maintain the full node-mode-day pairing for tracking 

unloading. Instead, we simply track the node-day pairing for the mode which is currently 

being analyzed. 

 The algorithm starts from the earliest arrival date, and begins to check through the 

list of shipments assigned to the particular mode. As it iterates through the shipments, if it 

finds any shipment with the arrival date it is currently searching for, it attempts to assign 

them immediately to the mode. If it fails, it adds them to the list for the next most 

expensive mode. If there is no more expensive mode, the shipment is retained at this 

mode. After processing through the list once, it increases the arrival date by one and 
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processes through again. This is repeated until all shipments have been processed through 

the system. 

 Processing based upon earliest arrival date is known as the EAD priority rule. 

This rule has several advantages. Primarily, it ensures that the infrastructure begins work 

as early as possible. That is to say that since no shipment can arrive prior to the shipments 

with the earliest arrival date, if they are the first shipments assigned, we can guarantee 

minimal lead-time, which helps in reducing wasted processing time. 

 EAD is approximately equivalent to the First Come First Served (FCFS) rule, 

which is intuitively a very efficient means of ensuring that the infrastructure is efficiently 

used. The primary failing of FCFS and EAD is relative to rules such as Shortest 

Processing Time or Weighted Shortest Processing Time. EAD is efficient at ensuring the 

maximum possible tonnage is carried, but does not account for weighting across 

tonnages. Fortunately, in our case, it is assumed that all shipments have equally inviolate 

priority. 

 The process of assignment for infrastructure is a relatively simple one. Each 

shipment is taken in order, and the algorithm searches the array to attempt to find space to 

unload it. At this point, we do not concern ourselves with vehicles. However, we do add 

the constraint that no shipment can be unloaded before its arrival time plus time of travel 

to the unloading point. 

 In order to search the array for the appropriate amount of time, we first calculate 

the time required for unloading. This is simply the size of the shipment divided by 

unloading capacity. We then find our start point, which is the arrival time for the 
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shipment plus the travel time required on the mode in use. Finally, we iterate from this 

point to the deadline for the shipment, summing all free time we find. 

 The array used to track the amount of free infrastructure capacity is made up of 

the amount of capacity free on any given day. Each value is between 0 and 1. If the value 

is 0, the day is completely free. If the value is 1, the day is completely full. Any value 

other than these two represents a partially used day. The algorithm adds the remaining 

portion of the day for each day between the start time and the deadline, except the first. 

For that day, it adds the remainder only if the already allocated portion of the day is larger 

than travel time. This prevents the shipment from being treated as unloading while it is 

still in travel. 

 If the algorithm finds sufficient space for the unloading of the shipment, then the 

shipment is added to the output list for this mode. If it does not, then it is added to the 

output list for the next most expensive mode. It is not necessary at this stage for the 

loading to be contiguous, as the specifics of assignment are handled at the vehicle 

assignment stage. 

 

Vehicle Assignment 

 The vehicle assignment algorithm is the core of the scheduling heuristic. It 

receives a list of shipments which must be assigned to the most expensive mode from the 

infrastructure assignment component, and it converts that list into both a detailed 

schedule and a requirement in terms of number of vehicles. Because it is so essential, and 

because it is complex, it merits a more detailed look than either the deadline or 

infrastructure components of the heuristic. 
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 The vehicle assignment algorithm uses the same method of selection for 

shipments as the infrastructure method. It chooses them based on earliest arrival date, 

tracking down through the assigned list, iterating each arrival date in turn. 

 Once the shipment has been chosen, the algorithm first determines the number of 

vehicles necessary to carry the shipment. This is the size of the shipment divided by the 

capacity of the vehicle, rounded upwards. The algorithm then begins the search for 

appropriate vehicle and unloading space for the shipment. 

 The first step in this process is identifying a free space on a vehicle. Much as in 

the infrastructure array, we use an array to track the usage of the vehicles. Unlike in the 

infrastructure array, however, we must seek to gain continuous use of the vehicle for the 

full duration of the trip. So rather than simply beginning at our starting point and 

proceeding to deadline, summing the free space, we use a rather more complicated 

summation process. We begin at the arrival day for the shipment and iterate through the 

chosen vehicle’s days. If we find a day that is empty, we add 1 to our currently found free 

time. If we find a day that is not empty, we add the remainder of its capacity to our 

currently found free time. If, after adding the new capacity, the free time found is greater 

than the amount needed, we mark our original start time as an appropriate start time for 

the shipment-component and proceed to the infrastructure correction step. If not, we set 

our total free time equal to the remainder, and set the current day as our start time. 

 If we fail to identify a free spot large enough to carry the shipment and our 

vehicle isn’t one that was generated just for this shipment, then we generate a new 

vehicle to carry the shipment. If the vehicle was generated just for this shipment, then we 

ignore the deadline limitation and assign the shipment as late, if necessary. 
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 If, however, we identify a free spot in the vehicles where the shipment could be 

carried, we must now confirm that there is infrastructure available to unload the shipment 

in the appropriate place. This process is identical to the process for finding free space on 

a vehicle, except that new infrastructure cannot be generated. If we find ourselves pushed 

past the deadline on infrastructure, we instead simply must assign past the deadline. 

 If the start time found by the vehicle-search is confirmed by the unload-search, 

then we may add it to our list and begin searching for vehicle and unload space for the 

next shipment-component. However, if it is not, we find the next start time available 

among the vehicles, starting at the one suggested by our unload-search. If the start time 

required correction, we repeat the process until the shipment is assigned.  

 If at any time we are forced to use a new vehicle, we track the number of this 

vehicle. The last vehicle we are forced to generate is the minimum number of vehicles 

required to service this set of requirements. 

 Finally, when we have found appropriate start times for all the components of a 

shipment, we allocate the shipment and fill the capacity in the unload and vehicle arrays. 

It is at this point that we remove the shipment from the shipment requirements array, to 

represent that it has been assigned. 
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Correction Step 

 The correction step is the final process in the scheduling heuristic. In this stage, 

the algorithm uses the same search procedures used in the vehicle assignment stage, 

iterating through all unassigned shipments in EAD order. However, if it fails to find 

capacity, it simply moves on to the next shipment, rather than generating a new vehicle. 

 It treats the number of vehicles generated by the vehicle assignment step as a 

capacity on the amount of flow the vehicles are capable of handling. However, if a 

shipment can be assigned, it is assigned and deleted from the shipment list. 
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IV.  Results and Analysis 

 

Simple Test Case 

 In order to examine the capabilities of the algorithm, a series of test cases were 

created. The test cases were deliberately chosen for ease of solution, in order to make 

comparison against an intuitive or obvious perfect solution, simple for the reader. In the 

first case, our study case is hyper-simplified and consists of only 5 shipments, each with a 

three-day gap between arrival and delivery, arriving at the same source node, one per day, 

over a five day period, all of which are destined for the same sink node. 

 For simplicity's sake, this example deals in only one mode and the sizes of the 

five shipments are equal to the capacity of the vehicles, resulting in exactly one shipment 

being carried by each vehicle per trip. The vehicle was given a speed of 100, and the 

distance between nodes 1 and 2 was set to 100; also, the unloading capacity for the sink 

node was set to 100, to simplify displaying the outcome. Table 1 summarizes the shipping 

requirements for the system. 
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Table 1. Simple Test Case Data Input 

Shipment Size Source Sink Arrival Deadline 

S1 100 1 2 1 4 

S2 100 1 2 2 5 

S3 100 1 2 3 6 

S4 100 1 2 4 7 

S5 100 1 2 5 8 

 

 The algorithm returned the following, displayed in Table 2, as a feasible 

resolution of the system, determining that the number of vehicles required for such a 

solution was three. 

Table 2. Simple Test Case Results Output 

Shipment Start Time Arrival Time Vehicle Number Ahead of 
Deadline 

S1 1 4 1 Yes 

S2 2 5 2 Yes 

S3 3 6 3 Yes 

S4 4 7 1 Yes 

S5 5 8 2 Yes 
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 Examining the solution shown in Table 2, it is possible to chart the assignments 

which each of the three vehicles had for the duration of the transportation solution; for 

clarity, the schedule produced is shown below in Table 3. 

Table 3. Simple Test Case Vehicle Schedule 

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

1 S1 
delivery 

S1 unload S1 return S4 
delivery 

S4 unload S4 return Idle 

2 Idle S2 
delivery 

S2 unload S2 return S5 
delivery 

S5 unload S5 return 

3 Idle Idle S3 
delivery 

S3 unload S3 return Idle Idle 

 

Modified Simple Case 

 The algorithm, then, is capable of achieving an intuitive result on a small scale. 

Given that this test case is equivalent to the case where all shipments can be carried on a 

single cheapest mode, that data shall not be repeated here. However, a secondary 

component of the algorithm which bears examination is its capacity to compensate for a 

shipment being forced onto a high cost mode, by utilizing the idle capacity of that mode 

to the greatest extent possible. As a consequence, our second test case, the modified 

simple case, will change the base case in two ways. First, it will add a second mode, 

considered more expensive than the first, which travels at a rate of 200 units per day, with 

identical independent unloading capacity to the first mode. Second, it will change the 

deadline on the first shipment to 2. The input for this case is shown in Table 4. 

Because the first shipment has a deadline of 2, it is impossible for it to be 

delivered by the deadline using the first or second modes, and so it will be forced to 

travel on the second mode in order to minimize the violation of the deadline 
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(guaranteeing a minimum number of vehicles for the second mode of at least one). 

However, the rest of the vehicle's time is not accounted for, and so we must allocate as 

many shipments as possible to the idle time on that vehicle in order to minimize the 

number of lower cost vehicles used. 

 In this instance, the utilization of the mode allows for two additional shipments to 

be handled by the most expensive mode, on the same vehicle that is handling the first 

shipment, resulting in two fewer vehicles being required on the first mode. 

Table 4. Modified Simple Case Data Input 

Shipment Size Source Sink Deadline 

S1 100 1 2 2 

S2 100 1 2 5 

S3 100 1 2 6 

S4 100 1 2 7 

S5 100 1 2 8 

 

 In this case, it is worth detailing the differences between the two modes, as well as 

their similarities, which can be seen in Table 5: 

Table 5. Modified Simple Case Vehicle Data 

Vehicle Capacity Unload Rate Speed 

1 100 100 100 

2 100 100 200 
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 The chart of our delivery times, travel times, and vehicle pairings is given below 

in Table 6, and below that, the chart of the vehicle time-assignments is given. 

Table 6. Modified Simple Case Shipment Schedule 

Shipment Start Time Arrival Time Vehicle Number Ahead of 
Deadline 

S1 1 2.5 1 (Mode 2) No 

S2 3 4.5 1 (Mode 2) Yes 

S3 3 5 1 (Mode 1) Yes 

S4 5 6.5 1 (Mode 2) Yes 

S5 6 8 1 (Mode 1) Yes 

 

 Because the second mode performs deliveries in one half-day, the pattern is that 

on the 'outgoing' day, the travel is completed outgoing, and half of the unloading is done, 

and on the next day, the remainder of the unloading is completed, and then the shipment 

is returned, as demonstrated by Table 7. 

Table 7. Modified Simple Case Vehicle Schedule 

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day7 
1 (Mode 2) S1 Out S1 Return S2 Out S2 Return S4 Out S4 Return Idle 
1 (Mode 1) Idle Idle S3 Out S3 

Deliver 
S3 Return S5 Out S5 

Deliver 
 

 This demonstrates the capacity of the algorithm to combine minimization 

techniques in order to reduce the impact of forced increases in the number of high-cost 
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vehicles being deployed, by utilizing those new, largely idle, vehicles in order to decrease 

the number of vehicles required at lower tiers. Of course, in a more complex problem, 

resolutions will be substantially more complicated to come by, and in most cases, less 

efficient, and less obviously so. However, the general principle of efficient allocation still 

holds in more complex cases. 

 

Multinodal, Multimodal Demonstration Case 

 The complexity of the algorithm, and its potency, rests upon its capacity to deal 

efficiently, and quickly, with problems that handle both multiple sources and sinks, and 

multiple modes, on large scale, but of course it is difficult to demonstrate efficiency in the 

large scale, because by-hand and intuitive solutions are hard to come by. Instead, we 

examine the efficacy of the algorithm using a smaller multimodal, multinodal pattern. 

 In this instance, our case involves three modes, over four nodes, each equidistant 

at 100 units from each other node, and each capable of unloading 100 units per day from 

each mode. For this problem, the speeds for our three vehicle types are 50, 100, and 200 

units and the capacities are the same. We will process twelve shipments across the nodes, 

using nodes 1 and 2 solely as sources, and nodes 3 and 4 solely as sinks. The sum of all 

tonnage shipped is 2400 and the arrival times and deadlines are broadly separated, 

allowing for a powerful estimate of 2400/10 or 240 tons per day of shipping power being 

a floor on the number of tons per day of vehicle required to handle the shipping. 

 Of course, at this tier of processing, the outputs become significantly more 

complicated. As a consequence, we will simply list the vehicle number, node, start time, 

and mode for each shipment and shipment-component, as shown in Table 8.   
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Table 8. Multimodal Simple Case Data Input 

Shipment 
No. 

Source Sink Size Arrival Deadline 

1 1 3 100 1 7 
2 2 3 200 1 7 
3 1 4 300 1 7 
4 2 4 100 1 7 
5 1 3 200 3 10 
6 2 3 300 3 10 
7 1 4 100 3 10 
8 2 4 200 3 10 
9 1 3 300 1 7 

10 2 3 100 1 7 
11 1 4 200 3 10 
12 2 4 300 3 10 

 

 

 

This list is not the original data output from the program, but has been sorted to 

highlight both the process behind the assignment of shipments to specific vehicles and a 

problem induced by the specific granularity of the shipments. Note that the shipments fit 

neatly together, as regards unloading. This is due to the algorithm’s deliberate seeking of 

gaps at every stage of a schedule’s creation, resulting in carefully stacked shipment 

unloading times. Of course, this method is aided by the uniformity of vehicle unload-

times, which are in the algorithm artificially held constant, as a relationship between the 

size of vehicle, and the capacity for unloading that particular vehicle at that particular 

node. Nonetheless, the algorithm has finely used all available unloading space in this 

limited example. 

A notable, potential error is the double-booking effect visible in the use of mode 

2, node 3 unloading capacity. Shipment-components are being loaded simultaneously, 

resulting in unloading times taking up the same block, theoretically. This, of course, is an 
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impossibility according to the strict rules of the problem. The shipments, according to our 

previous assumptions, use all unloading capacity totally and therefore cannot be unloaded 

simultaneously. 

The cause of this apparent error is double-booking. The shipments are both 

attempting to use the latter half of the first day on which they both arrive, and the first 

half of the next day. As the algorithm does not have sufficient granularity to track half-

days, the shipments are nominally double-booking. 

The next table, Table 9, shows the data with a view to the particular assignments 

made to specific vehicles at specific times. Notably, it sorts by mode, then vehicle 

number, and then start-time, in order to demonstrate the relative efficiency and 

inefficiency of allocation according to the algorithm. 

In this case, the algorithm generates an essentially perfect solution to the system, 

using virtually every open space, and the result is intuitively near-optimal. For mode 1, 

each vehicle can handle at most 3 assignments (as it requires three days to deliver any in 

particular, and the latest deadline is day 10). From this we know that, at least, we would 

need 5 vehicles, as we have 14 shipments. Shipment 7, our last shipment, has a deadline 

on day 7, and so it is apparent it could not easily be transferred to vehicle 4 or 5 with the 

shipment loads as they currently stand. While it is conceivable that a more efficient 

solution exists, the solution generated by the algorithm is intuitively near-optimal, at least 

for mode 1. On mode 2, we simply observe that both vehicles are identically full. 
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Table 9. Multimodal Simple Case Shipment Output 

Mode Vehicle Start Time Shipment Sink 
1 1 1 2 3 
1 1 4 2 3 
1 1 7 8 4 
1 2 1 3 4 
1 2 4 3 4 
1 2 8 8 4 
1 3 2 3 4 
1 3 5 4 4 
1 3 9 11 4 
1 4 2 9 3 
1 4 5 9 3 
1 5 3 9 3 
1 5 6 11 4 
1 6 3 7 4 
2 1 1 10 3 
2 1 3 6 3 
2 1 5 6 3 
2 1 7 6 3 
2 1 9 12 4 
2 2 1 1 3 
2 2 3 12 4 
2 2 5 12 4 
2 2 7 5 3 
2 2 9 5 3 

 

 To compare to our earlier values, we have 6 vehicles of type 1, shipping 100 units 

every 3 days, and 2 vehicles of type 2, shipping 100 units every 2 days, for a total of 300 

units of shipping capacity. This compares favorably to our lower bound estimate of 240 

tons as an absolute minimum, given the effects of infrastructure interference and the 

uneven effect of making trips of duration 3 days during a space of 10 days. 
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Multimodal Large Scale Case 

In order to test the algorithm’s capacity to perform at large scale, a new shipping 

requirement list was created for the multimodal simple case. In this expansion of the 

original problem, we extrapolated the original data set to one hundred shipments, and 

extended the infrastructure capacity of the underlying network to handle 100,000 units 

per node per day, in order to ensure feasibility. 

Solution of the problem required approximately five seconds. The data that was 

returned indicated that 212 vehicles were required to handle the shipping, all of the same 

mode, which approximately conforms to expectations. Given that infrastructure and 

deadline limitations were not concerns, all shipments should have been processed on the 

first mode. This was indeed the case. 

Determining whether the solution was ultimately feasible would require detailed 

comparison of each shipment to each other shipment and to the overall infrastructure 

capacity and vehicle usage charts, in order to confirm the validity of the original result, 

but a superficial examination reveals start times which increase slowly as the 

infrastructure begins to fill. 

A second attempt was made to process the same set of shipments, using infrastructure 

of only 100 per day. This resulted in massive over-flow, as predicted, over-flowing the 

limited 2-dimensional array for unloading. The array was defined to allow unloading to 

take place only twice the difference between the latest deadline and the earliest arrival 

from the earliest arrival. Because the shipping requirements were infeasible beyond 

anticipated infeasibility, the algorithm could not provide even an infeasible schedule.    
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V. Conclusions 

 

Summary 

The combination of Dijkstra’s algorithm and scheduling heuristic developed here 

provide an efficient schedule for a multiple vehicle routing problem and an efficient high 

estimate on the number of vehicles required.  In Chapter II, we showed that the field of 

solution techniques for large scale VRP is sparse when providing schedules for above 

500 shipments. In Chapter IV, we demonstrated that the algorithm illustrated here can 

resolve the MVRP with 500 shipments in a very short period of time. 

The algorithm is highly specialized. It requires that vehicles travel directly from 

source to sink, and then return to source. It also requires that vehicles be allowed to carry 

only one shipment or shipment component, that shipments be required to travel 

unimodally, and that speed and cost increase together continuously. Finally, it requires a 

large differential in cost between each vehicle type. 

With those caveats, the algorithm is timely and effective. It provides efficient 

solutions in a short time frame at large scale. The solutions are heuristic but provide a 

feasible solution of good quality and a starting point for correction by Tabu search and 

other heuristics. 
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Future Research 

 The research suggests several notable avenues for future research. Firstly, the 

algorithm could be combined with another heuristic to generate more optimal solutions. 

For example, a Tabu search could be applied after the generation of the initial solution by 

this algorithm, providing a correction mechanism.  

 Secondly, the algorithm could be extended to true multi-modality for single 

shipments. By generating multimodal shortest paths, as well as unimodal shortest paths, 

in the Dijkstra’s stage, and using an appropriate costing mechanism during the scheduling 

heuristic, the algorithm could handle multimodal paths, treating them as another type of 

vehicle. 

 Thirdly, the algorithm could be extended to handle multiple shipments on the 

same vehicle. The intuitive approach to this extension would be to add another step to the 

scheduling heuristic that attempted to use excess capacity on vehicles which were already 

scheduled. This would allow for more efficient use of the vehicles and better solutions. It 

would especially improve solutions in instances where the shipments were generally 

smaller than the capacity of a single vehicle.
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Appendix A: Shortest Path Network Generator 

 

This subprocedure is the core process for the Dijkstra’s algorithm component of 
the thesis. It iterates through the nodes, applies the Dijkstra’s subprocedure to them, and 
records the results of the Dijkstra’s algorithm for each source node in turn. 

Sub simplifynetwork() 
    Dim n As Integer 
    Dim i As Integer 
    Dim SourceNode As Integer 
    Dim NetworkSheet As String 
    Dim numnodes As Integer 
    NetworkSheet = ActiveSheet.Name 
    SourceNode = 1 
    n = 1 
    i = 1 
    j = 1 
    Sheets(NetworkSheet).Activate 
    Range("A1").Select 
    Do While ActiveCell.Offset(n, 0).Value <> 0 
        n = n + 1 
    Loop 
        numnodes = n - 1 
        Sheets.Add.Name = "Simplified " & NetworkSheet 
        Sheets.Add.Name = "Simplified " & NetworkSheet & " Paths" 
    Do While SourceNode <= numnodes 
        DijkstrasAlgorithm SourceNode, numnodes, NetworkSheet 
        SourceNode = SourceNode + 1 
    Loop 
    Sheets("Simplified " & NetworkSheet & " Paths").Activate 
    ActiveCell.Value = "Nodes" 
    Do While i <= numnodes 
        ActiveCell.Offset(0, i) = Str(i) 
        ActiveCell.Offset(i, 0) = Str(i) 
        i = i + 1 
    Loop 
    Sheets("Simplified " & NetworkSheet).Activate 
    ActiveCell.Value = "Nodes" 
    Do While j <= numnodes 
        ActiveCell.Offset(0, j) = Str(j) 
        j = j + 1 
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    Loop 
End Sub 
 

This subprocedure is Dijkstra’s Algorithm. It uses Dijkstra’s method for defining 
the distance between a specific node and all other nodes in a network to define a list of 
distances between a source node and all other nodes.  

 

Sub DijkstrasAlgorithm(SourceNode As Integer, numnodes As Integer, NetworkSheet As 
String) 
    Dim CurrentNode As Integer               
    Dim CurrentDist As Double                
    Dim AmDone As Boolean                    
    Dim ShortestDist() As Double             
    Dim BigM As Double                       
    Dim n As Integer                         
    Dim i As Integer                         
    Dim j As Integer                       
    Dim CurrentLowDist As Double             
    Dim CurrentLowNode As Integer            
    Dim FoundUnexplored As Boolean           
    Dim K As Integer                         
    Dim DistOnThisPath As Double             
    Dim ShortestPath() As String             
    Dim p As Integer                                 
    AmDone = False 
    CurrentNode = SourceNode 
    CurrentDist = 0 
    BigM = 1E+300 
    n = 1 
    ReDim ShortestDist(1 To numnodes) 
    ReDim ShortestPath(1 To numnodes) 
    Do While n <= numnodes 
        ShortestDist(n) = BigM 
        ShortestPath(n) = Str(SourceNode) 
        n = n + 1 
    Loop 
    ShortestDist(SourceNode) = 0 
    Do While AmDone = False 
        i = 1 
        Do While i <= numnodes 
            DistOnThisPath = finddist(CurrentNode, i, NetworkSheet) + 
ShortestDist(CurrentNode) 
            If DistOnThisPath < ShortestDist(i) Then 
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                ShortestDist(i) = DistOnThisPath 
                ShortestPath(i) = ShortestPath(CurrentNode) & Str(i) 
            End If 
            i = i + 1 
        Loop 
        j = 1 
        CurrentLowDist = BigM 
        FoundUnexplored = False 
        Do While j <= numnodes 
            If ShortestDist(j) > CurrentDist Then 
                If ShortestDist(j) < CurrentLowDist Then 
                    CurrentLowDist = ShortestDist(j) 
                    CurrentLowNode = j 
                    FoundUnexplored = True 
                End If 
            ElseIf ShortestDist(j) = CurrentDist Then 
                If CurrentNode < j Then 
                    CurrentLowDist = ShortestDist(j) 
                    CurrentLowNode = j 
                    FoundUnexplored = True 
                End If 
            End If 
            j = j + 1 
        Loop 
        If FoundUnexplored = False Then 
            AmDone = True 
        ElseIf FoundUnexplored = True Then 
            CurrentNode = CurrentLowNode 
            CurrentDist = CurrentLowDist 
        End If 
    Loop 
    Sheets("Simplified " & NetworkSheet).Activate 
    ActiveSheet.Range("A1").Select 
    K = 1 
    Do While ActiveCell.Offset(K, 0).Value <> 0 
        K = K + 1 
    Loop 
    ActiveCell.Offset(K, 0) = SourceNode 
    l = 1 
    Do While l < numnodes + 1 
        ActiveCell.Offset(K, l) = ShortestDist(l) 
        l = l + 1 
    Loop 
    Sheets("Simplified " & NetworkSheet & " Paths").Activate 
    ActiveSheet.Range("A1").Select 
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    p = 1 
    Do While p < numnodes + 1 
        ActiveCell.Offset(K, p) = ShortestPath(p) 
        p = p + 1 
    Loop    
End Sub 
 

 This function is used for finding the distances in the original network between any 
node and any other node, using direct paths. It is assumed that the original network 
contains connections between each path, although setting the distance arbitrarily large has 
the effect of eliminating the connection, since any shorter path will replace it. 

Function finddist(SourceNode As Integer, sinknode As Integer, NetworkSheet As String) 
    Sheets(NetworkSheet).Activate 
    ActiveSheet.Range("A1").Select 
    finddist = CDbl(ActiveCell.Offset(SourceNode, sinknode).Value) 
End Function 
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Appendix B: Ordered Scheduling Heuristic 

 

Public NumNodes As Integer 
Public NumModes As Integer 
Public numshipments As Integer 
Public SimpleNetwork() As Variant 
Public minvehicles() As Integer 
Public latedeadline As Integer 
Public highestused As Integer 
Public ShArrival() As Variant 
Public ShDeadline() As Variant 
Public vehiclespeeds() As Variant 
Public shsize As Variant 
Public shsink As Variant 
Public shsource As Variant 
Public vcapacity As Variant 
Public shUnloadTime() As Double 
Public shipmentarray() As Integer 
Public shipmentarraynum As Integer 
Public vunloadtime() As Double 
Public index As Integer 
Public shtraveltime() As Double 
 

 This is the core procedure for the Heuristic Scheduler. It handles the process of 
tracking which mode is being minimized, as well as passing the array of shipments to be 
processed from component to component. 

Sub HeuristicScheduler() 
    Dim NumShipArray As Integer 
    Dim DeadlineArray() As Integer 
    Dim DeadlineTracker() As Integer 
    Dim infraarray() As Integer 
    Dim infratracker() As Integer 
    Dim n As Integer 
    Dim mode As Integer 
    Popglobals 
    PopulateSimpleNetwork 
    index = 1 
    ReDim shUnloadTime(1 To NumModes, 1 To numshipments) 
    ReDim shipmentarray(1 To numshipments) 
    shipmentarraynum = numshipments 
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    n = 1 
        Do While n <= numshipments 
        shipmentarray(n) = n 
        n = n + 1 
    Loop  
    mode = NumModes 
    Do While mode > 0 
        DeadlineArrayGenerator shipmentarray(), shipmentarraynum, DeadlineArray(), 
DeadlineTracker() 
        InfraArrayGenerator DeadlineArray(), DeadlineTracker(), infraarray(), infratracker() 
        ListVehicAssign infraarray(), infratracker(), mode 
        eliminateshipments infraarray(), infratracker(), mode, shipmentarray(), 
shipmentarraynum 
        mode = mode - 1 
    Loop 
End Sub 
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 This subprocedure is responsible for eliminating the shipments which have been 
assigned as part of the Vehicle Assignment step. It tracks through all assigned shipments, 
finds them in the original array, and deletes them, replacing them with the last value in 
the array, and reducing the size of the array by 1. 

Sub eliminateshipments(infraarray() As Integer, infratracker() As Integer, mode As 
Integer, shipmentarray() As Integer, shipmentarraynum As Integer) 
    Dim n As Integer 
    Dim k As Integer 
    Dim elim As Boolean 
    elim = False 
    n = 1 
    k = 1 
    Do While n <= infratracker(mode) 
        Do While k <= shipmentarraynum And elim = False 
            If infraarray(mode, n) = shipmentarray(k) Then 
                elim = True 
                shipmentarray(k) = shipmentarray(shipmentarraynum) 
                shipmentarraynum = shipmentarraynum - 1 
            End If 
            k = k + 1 
        Loop 
        elim = False 
        k = 1 
        n = n + 1 
    Loop 
End Sub 
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 This subprocedure handles the process of choosing shipments from the output of 
the Infrastructure Assignment step to be assigned to specific vehicles. It iterates through 
the output of the Infrastructure Assignment step for the minimizing mode, in order of 
arrival date, and sends the shipments which are chosen to the shipment assignment step, 
ShipmentVehicAssign. 

Sub ListVehicAssign(infraarray() As Integer, infratracker() As Integer, mode As Integer) 
    Dim n As Integer 
    Dim VehicAssignArray() As Double 
    Dim unloadarray() As Double 
    Dim currmode As Integer 
    ReDim VehicAssignArray(1 To minvehicles(mode), 1 To latedeadline) 
    ReDim unloadarray(1 To NumNodes, 1 To latedeadline) 
    highestused = 0 
    n = 1 
    Do While n <= infratracker(mode) 
        ShipmentVehicAssign VehicAssignArray(), infraarray(mode, n), mode, 
unloadarray(), highestused 
        n = n + 1 
    Loop 
    minvehicles(mode) = highestused 
    If mode > 1 Then 
        listgapcheck VehicAssignArray(), infraarray(), infratracker(mode - 1), mode, 
unloadarray() 
    End If 
End Sub 
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 ListGapCheck iterates through the reduced shipment list, after the Vehicle 
Assignment step, and sends each shipment to ShipmentGapCheck. ShipmentGapCheck 
then determines whether the current infrastructure and vehicle assignments for the 
minimized mode can handle the additional shipment. ShipmentGapCheck then eliminates 
the shipment, if it can be assigned, and fills in the appropriate gaps.  

Sub listgapcheck(VehicAssignArray() As Double, ShipmentList() As Integer, infranum 
As Integer, currmode As Integer, unloadarray() As Double) 
    Dim n As Integer 
    Dim found As Boolean 
    Dim currvehicle As Integer 
    n = 1 
    Do While n <= infranum 
        ShipmentGapCheck VehicAssignArray(), ShipmentList(), n, infranum, currmode, 
unloadarray() 
        n = n + 1 
    Loop 
End Sub 
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 ShipmentGapCheck attempts to assign the shipment given to it to the recently 
minimized mode, searching for any gaps large enough to carry the current shipment. If it 
can find such a gap, it fills the gap, and deletes the shipment from the array of unassigned 
shipments. 

Sub ShipmentGapCheck(VehicAssignArray() As Double, ShipmentList() As Integer, 
ShipmentNumber As Integer, infranum As Integer, mode As Integer, unloadarray() As 
Double) 
    Dim currvehicle As Integer 
    Dim found As Boolean 
    Dim currstart As Double 
    Dim starttimes() As Double 
    Dim foundvehicles As Integer 
    Dim vehicles() As Integer 
    Dim shipment As Integer 
    Dim i As Integer 
    Dim j As Integer 
    Dim elim As Boolean 
    Dim pseudounloadarray() As Double 
    Dim l As Integer 
    Dim k As Integer 
    Dim traveltime As Double 
    ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline) 
    shipment = ShipmentList(mode - 1, ShipmentNumber) 
    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 
    currvehicle = 1 
    l = 1 
    k = 1 
    Do While l <= NumNodes 
        Do While k <= latedeadline 
            pseudounloadarray(l, k) = unloadarray(l, k) 
            k = k + 1 
        Loop 
        k = 1 
        l = l + 1 
    Loop 
    If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0 
Then 
        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1 
    Else 
        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) 
    End If 
    ReDim vehicles(1 To neededvehicles) 
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    ReDim starttimes(1 To neededvehicles) 
    Do While currvehicle <= minvehicles(mode) And foundvehicles < neededvehicles 
        If foundvehicles > 0 Then 
            If vehicles(foundvehicles) = currvehicle Then 
                currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) + 
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode) 
            Else 
                currstart = 0 
            End If 
        Else 
            currstart = 0 
        End If 
        found = True 
        corrected = True 
        Do While found = True And corrected = True 
            found = findstarttime(VehicAssignArray(), mode, starttimes(foundvehicles + 1), 
currvehicle, currstart, shipment) 
            corrected = correctstarttime(pseudounloadarray(), mode, starttimes(foundvehicles 
+ 1), currvehicle, found, shipment, currstart) 
        Loop 
        If found = True Then 
            foundvehicles = foundvehicles + 1 
            allocate starttimes(foundvehicles) + traveltime, pseudounloadarray(), 
shsink(shipment), vunloadtime(mode, shsink(shipment)) 
            vehicles(foundvehicles) = currvehicle 
            n = n + 1 
        Else 
            currvehicle = currvehicle + 1 
            corrected = True 
            found = True 
        End If 
    Loop 
    i = 1 
    If foundvehicles >= neededvehicles Then 
        Do While i <= neededvehicles 
            allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(), 
unloadarray(), mode 
            i = i + 1 
        Loop 
        j = 1 
        Do While j <= infranum And elim = False 
            If shipmentarray(j) = shipment Then 
                shipmentarray(j) = shipmentarray(shipmentarraynum) 
                shipmentarraynum = shipmentarraynum - 1 
                elim = True 
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            End If 
            j = j + 1 
        Loop 
    End If 
End Sub 
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ShipmentVehicAssign handles the process of tracking the starttimes for various 
components of a shipment, and passes the components to the parts of the algorithm to 
findstarttime and correctstarttime, the subprocedures responsible for finding gaps large 
enough to handle a shipment, both in the vehicle array, and in the unloading array. 

It also maintains the pseudo unload array, an array used to track hypothetical 
points of unloading for shipment components prior to their final assignment. 

Sub ShipmentVehicAssign(VehicAssignArray() As Double, shipment As Integer, mode 
As Integer, unloadarray() As Double, highestused As Integer) 
    Dim neededvehicles As Integer 
    Dim n As Integer 
    Dim i As Integer 
    Dim starttimes() As Double 
    Dim found As Boolean 
    Dim corrected As Boolean 
    Dim currstart As Double 
    Dim vehicles() As Integer 
    Dim currvehicle As Integer 
    Dim pseudounloadarray() As Double 
    Dim j As Integer 
    Dim k As Integer 
    Dim temphighestused As Integer 
    Dim traveltime As Double 
    ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline) 
    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 
    j = 1 
    k = 1 
    Do While j <= NumNodes 
        Do While k <= latedeadline 
            pseudounloadarray(j, k) = unloadarray(j, k) 
            k = k + 1 
        Loop 
        k = 1 
        j = j + 1 
    Loop 
    If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0 
Then 
        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1 
    Else 
        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) 
    End If 
    ReDim starttimes(1 To neededvehicles) 
    ReDim vehicles(1 To neededvehicles) 
    n = 1 
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    currvehicle = 1 
    temphighestused = highestused 
    Do While n <= neededvehicles 
        corrected = True 
        found = True 
        If foundvehicles > 0 Then 
            If vehicles(foundvehicles) = currvehicle Then 
                currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) + 
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode) 
            Else 
                currstart = 0 
            End If 
        Else 
            currstart = 0 
        End If 
        Do While corrected = True And found = True 
            found = findstarttime(VehicAssignArray(), mode, starttimes(n), currvehicle, 
currstart, shipment) 
            corrected = correctstarttime(pseudounloadarray(), mode, starttimes(n), 
currvehicle, found, shipment, currstart) 
        Loop 
        If found = True Or currvehicle > temphighestused Then 
            vehicles(n) = currvehicle 
            foundvehicles = foundvehicles + 1 
            allocate starttimes(n) + traveltime, pseudounloadarray(), shsink(shipment), 
vunloadtime(mode, shsink(shipment)) 
            If vehicles(foundvehicles) > temphighestused Then 
                temphighestused = vehicles(foundvehicles) 
            End If 
            n = n + 1 
        Else 
            currvehicle = currvehicle + 1 
            currstart = 0 
            corrected = True 
            found = True 
        End If 
    Loop 
    i = 1 
    Do While i <= neededvehicles 
        If shipment = 3 Then 
            shipment = shipment 
        End If 
        allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(), 
unloadarray(), mode 
        i = i + 1 
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    Loop 
    If vehicles(neededvehicles) > highestused Then 
        highestused = vehicles(neededvehicles) 
    End If 
End Sub 
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 This procedure is used to allocate a shipment component whose starttime is 
known. The algorithm simply fills in the gap it is passed, using the shipment and vehicle 
information to determine how much of the gap must be filled in. 

Sub allocshipvehic(starttime As Double, vehicle As Integer, shipment As Integer, 
VehicAssignArray() As Double, unloadarray() As Double, mode As Integer) 
    Dim reqvehictime As Double 
    Dim requnloadtime As Double 
    Dim allocvehictime As Double 
    Dim allocunloadtime As Double 
    Dim currtime As Double 
    Dim timetransfervariable As Double 
    Dim currday As Integer 
    Sheets("Output").Range("A1").Offset(index, 0) = shipment 
    Sheets("Output").Range("A1").Offset(index, 1) = vehicle 
    Sheets("Output").Range("A1").Offset(index, 2) = starttime 
    Sheets("Output").Range("A1").Offset(index, 3) = mode 
    Sheets("Output").Range("A1").Offset(index, 4) = shsink(shipment) 
    index = index + 1 
    reqvehictime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment)) 
    requnloadtime = vunloadtime(mode, shsink(shipment)) 
    currday = Int(starttime) 
    allocvehictime = 0 
    Do While allocvehictime < reqvehictime 
        timetransfervariable = 1 
        If timetransfervariable > (1 - starttime + currday) Then 
            timetransfervariable = 1 - starttime + currday 
        End If 
        If timetransfervariable > 1 - VehicAssignArray(vehicle, currday) Then 
            timetransfervariable = 1 - VehicAssignArray(vehicle, currday) 
        End If 
        If timetransfervariable > reqvehictime - allocvehictime Then 
            timetransfervariable = reqvehictime - allocvehictime 
        End If 
        VehicAssignArray(vehicle, currday) = VehicAssignArray(vehicle, currday) + 
timetransfervariable 
        allocvehictime = allocvehictime + timetransfervariable 
        currday = currday + 1 
    Loop 
    currday = Int(starttime + SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode)) 
    Do While allocunloadtime < requnloadtime 
        timetransfervariable = requnloadtime - allocunloadtime 
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        If timetransfervariable > (1 - starttime - SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + currday) Then 
            timetransfervariable = (1 - starttime - SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + currday) 
        End If 
        If timetransfervariable > 1 - unloadarray(shsink(shipment), currday) Then 
            timetransfervariable = 1 - unloadarray(shsink(shipment), currday) 
        End If 
        unloadarray(shsink(shipment), currday) = unloadarray(shsink(shipment), currday) + 
timetransfervariable 
        allocunloadtime = allocunloadtime + timetransfervariable 
        currday = currday + 1 
    Loop 
End Sub 
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 This function is used to determine whether a certain start time found in the vehicle 
array to be large enough for a particular shipment component has a corresponding gap in 
the unload array which is large enough to handle the shipment. If not, the function finds 
the next gap that is large enough, and returns it as a suggestion to the vehicle search 
component. 

Function correctstarttime(infraassignarray() As Double, mode As Integer, starttime As 
Double, currvehicle As Integer, found As Boolean, shipment As Integer, currstart As 
Double) 
    Dim currunloadtime As Double 
    Dim currday As Integer 
    Dim traveltime As Double 
    Dim availtime As Double 
    Dim curravailtime As Double 
    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 
    currunloadtime = starttime + traveltime 
    currday = Int(currunloadtime) 
    Do While availtime < vunloadtime(mode, shsink(shipment)) And currday < 
latedeadline 
        curravailtime = 1 
        If 1 - infraassignarray(shsink(shipment), currday) < curravailtime Then 
            curravailtime = 1 - infraassignarray(shsink(shipment), currday) 
        End If 
        If 1 - (currunloadtime - currday) < curravailtime Then 
            curravailtime = 1 - (currunloadtime - currday) 
        End If 
        availtime = availtime + curravailtime 
        If infraassignarray(shsink(shipment), currday) > 0 And availtime < 
vunloadtime(mode, shsink(shipment)) Then 
            currunloadtime = currday + infraassignarray(shsink(shipment), currday) 
            currday = currday + 1 
            availtime = currday - currunloadtime 
        End If 
    Loop 
    If currunloadtime = starttime + traveltime Then 
        correctstarttime = False 
    Else 
        correctstarttime = True 
        currstart = currunloadtime - traveltime 
    End If 
    If availtime >= vunloadtime(mode, shsink(shipment)) And currunloadtime + 
vunloadtime(mode, shsink(shipment)) <= ShDeadline(shipment) + 1 Then 
        found = True 
    Else 
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        found = False 
    End If 
End Function 
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 This function searches for the first gap in the vehicle array, for the current vehicle, 
capable of carrying a given shipment component. If found, it returns the time at which the 
gap is found. 

Function findstarttime(VehicAssignArray() As Double, mode As Integer, starttime As 
Double, currvehicle As Integer, currstart As Double, shipment As Integer) 
    Dim currtime As Double 
    Dim currday As Integer 
    Dim reqtime As Double 
    Dim availtime As Double 
    Dim curravailtime As Double 
    If ShArrival(shipment) > currstart Then 
        currtime = ShArrival(shipment) 
    Else 
        currtime = currstart 
    End If 
    currday = Int(currtime) 
    reqtime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment)) 
    Do While availtime < reqtime And currday < latedeadline 
        curravailtime = 1 
        If 1 - VehicAssignArray(currvehicle, currday) < curravailtime Then 
            curravailtime = 1 - VehicAssignArray(currvehicle, currday) 
        End If 
        If 1 - (currtime - currday) < curravailtime Then 
            curravailtime = 1 - (currtime - currday) 
        End If 
        availtime = availtime + curravailtime 
        If VehicAssignArray(currvehicle, currday) > 0 And availtime < reqtime Then 
            availtime = 1 - VehicAssignArray(currvehicle, currday) 
            currtime = currday + VehicAssignArray(currvehicle, currday) 
        End If 
        currday = currday + 1 
    Loop 
    starttime = currtime 
    If availtime >= reqtime And starttime + SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + vunloadtime(mode, shsink(shipment)) < 
ShDeadline(shipment) + 1 Then 
        findstarttime = True 
    Else 
        findstarttime = False 
    End If 
End Function 
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This procedure handles the top level of processing for the infrastructure 
assignment step. It passes the mode to be assigned to the infraassignstep, which then 
performs infrastructure assignment for the specific mode. 

Sub InfraArrayGenerator(DeadlineArray() As Integer, DeadlineTracker() As Integer, 
infraarray() As Integer, infratracker() As Integer) 
    Dim n As Integer 
    ReDim infraarray(1 To NumModes, 1 To numshipments) 
    ReDim infratracker(1 To NumModes) 
    n = 1 
    Do While n <= NumModes 
        InfraAssignStep DeadlineArray(), DeadlineTracker(), infraarray(), infratracker(), n 
        n = n + 1 
    Loop 
End Sub 
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 This subprocedure handles the process of allocating the shipments to unloading 
capacity. If the shipment can be allocated, it is retained for this mode. If no gap can be 
found, the algorithm assigns it upwards to the next mode. 

Sub InfraAssignStep(DeadlineArray() As Integer, DeadlineTracker() As Integer, 
infraarray() As Integer, infratracker() As Integer, currmode As Integer) 
    Dim infraassignarray() As Double 
    Dim n As Integer 
    Dim currarrival As Integer 
    Dim i As Integer 
    Dim shipment As Integer 
    ReDim shtraveltime(1 To numshipments) 
    ShDeadline = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2", 
Sheets("Shipments").Range("F2").End(xlDown))) 
    ShArrival = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2", 
Sheets("Shipments").Range("E2").End(xlDown))) 
    shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2", 
Sheets("Shipments").Range("C2").End(xlDown))) 
    populatetraveltime currmode, shtraveltime(), shsink 
    n = 1 
    latedeadline = 0 
    Do While n <= numshipments 
        If ShDeadline(n) > latedeadline Then 
            latedeadline = ShDeadline(n) 
        End If 
        If ShArrival(n) > latearrival Then 
            latearrival = ShArrival(n) 
        End If 
        n = n + 1 
    Loop 
    latedeadline = latedeadline * 2 
    ReDim infraassignarray(1 To NumNodes, 1 To latedeadline) 
    i = 1 
    currarrival = 1 
    Do While currarrival <= latearrival 
        Do While i <= DeadlineTracker(currmode) 
            shipment = DeadlineArray(currmode, i) 
            If currarrival = ShArrival(shipment) Then 
                found = findspace(shipment, infraassignarray(), shtraveltime(shipment) + 
ShArrival(shipment), ShDeadline(shipment), shsink(shipment), 
shUnloadTime(currmode, shipment)) 
                If found = True Or currmode = NumModes Then 
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                    allocate ShArrival(shipment) + shtraveltime(shipment), infraassignarray(), 
shsink(shipment), shUnloadTime(currmode, shipment) 
                    infratracker(currmode) = infratracker(currmode) + 1 
                    infraarray(currmode, infratracker(currmode)) = DeadlineArray(currmode, i) 
                    found = False 
                Else 
                    DeadlineTracker(currmode + 1) = DeadlineTracker(currmode + 1) + 1 
                    DeadlineArray(currmode + 1, DeadlineTracker(currmode + 1)) = 
DeadlineArray(currmode, i)                     
                End If 
            End If 
            i = i + 1 
        Loop 
        i = 1 
         
        currarrival = currarrival + 1 
    Loop 
End Sub 
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Calculates the traveltime required for each shipment, for each mode. 

Sub populatetraveltime(mode As Integer, traveltime() As Double, sink As Variant) 
    Dim n As Integer 
    vehiclespeeds = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2", 
Sheets("Vehicles").Range("B2").End(xlDown))) 
    shsource = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2", 
Sheets("Shipments").Range("B2").End(xlDown))) 
    n = 1 
    Do While n <= numshipments 
        traveltime(n) = SimpleNetwork(mode)(shsource(n), sink(n)) / vehiclespeeds(mode) 
        n = n + 1 
    Loop 
    n = 1 
End Sub 
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 Calculates the amount of time that a shipment will require on the unload array in 
order to be totally unloaded. 

Sub populateneededtime(mode As Integer, sink As Variant) 
    Dim n As Integer 
    Dim infraarray() As Variant 
    Dim transfervariable As Variant 
    Dim j As Integer 
    Dim k As Integer 
    ReDim infraarray(1 To NumModes) 
    ReDim vunloadtime(1 To NumModes, 1 To NumNodes) 
    shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2", 
Sheets("Shipments").Range("D2").End(xlDown))) 
    j = 1 
    Do While j <= NumModes 
        With Sheets("Network " & j & " Infra").Range("B2") 
            transfervariable = Application.WorksheetFunction.Transpose(Range(.Offset(0, 0), 
.End(xlDown))) 
        End With 
        infraarray(j) = transfervariable 
        k = 1 
        Do While k <= NumNodes 
            vunloadtime(j, k) = vcapacity(mode) / infraarray(j)(k) 
            k = k + 1 
        Loop 
        j = j + 1 
    Loop 
    n = 1 
    Do While n <= numshipments 
        shUnloadTime(mode, n) = shsize(n) / infraarray(mode)(sink(n)) 
        n = n + 1 
    Loop 
End Sub 
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 Checks the current infrastructure array to find gaps to which a shipment could be 
assigned. If it cannot find a gap, returns as false. Otherwise, returns as true. 

Function findspace(shipment As Integer, infraassignarray() As Double, startpoint As 
Double, deadline As Variant, sink As Variant, neededtime As Double) 
    Dim foundtime As Double 
    Dim currday As Integer 
    currday = Int(startpoint) 
    Do While foundtime < neededtime And currday <= deadline 
        foundtime = 1 - infraassignarray(sink, currday) + foundtime 
        If 1 - (startpoint - currday) < foundtime Then 
            foundtime = 1 - (startpoint - currday) 
        End If 
        currday = currday + 1 
    Loop 
    If foundtime >= neededtime Then 
        findspace = True 
    Else 
        findspace = False 
    End If 
End Function 
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 If findspace has found a gap during the infrastructure assignment phase, then the 
allocate component will fill in the gap, ensuring against double-booking. 

Sub allocate(startpoint As Double, infraassignarray() As Double, sink As Variant, 
neededtime As Double) 
    Dim remainingtime As Double 
    Dim currday As Integer 
    Dim transfertime As Double 
    currday = Int(startpoint) 
    remainingtime = neededtime 
    Do While remainingtime > 0 
        transfertime = remainingtime 
        If transfertime > 1 - infraassignarray(sink, currday) Then 
            transfertime = 1 - infraassignarray(sink, currday) 
        End If 
        If transfertime > currday + 1 - startpoint Then 
            transfertime = currday + 1 - startpoint 
        End If 
        infraassignarray(sink, currday) = infraassignarray(sink, currday) + transfertime 
        remainingtime = remainingtime - transfertime 
        currday = currday + 1 
    Loop 
End Sub 
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 This subprocedure populates the majority of the global variables used in later 
calculations from the excel sheets used as input. 

Sub Popglobals() 
    Dim vehicleestimate As Integer 
    Dim i As Integer 
    Dim mode As Integer 
    numshipments = Sheets("Shipments").Range("A1", 
Sheets("Shipments").Range("A1").End(xlDown)).Rows.Count - 1 
    NumModes = Sheets("Vehicles").Range("A1", 
Sheets("Vehicles").Range("A1").End(xlDown)).Rows.Count - 1 
    NumNodes = Sheets("Simplified Network 1").Range("A1", Sheets("Simplified 
Network 1").Range("A1").End(xlDown)).Rows.Count - 1 
    shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2", 
Sheets("Shipments").Range("D2").End(xlDown))) 
    vcapacity = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("C2", 
Sheets("Vehicles").Range("C2").End(xlDown))) 
    vehicleestimate = 0 
    i = 1 
    mode = 1 
    ReDim minvehicles(1 To NumModes) 
    Do While mode <= NumModes 
        Do While i <= numshipments 
                If shsize(i) / vcapacity(mode) > 1 Then 
                vehicleestimate = vehicleestimate + shsize(i) / vcapacity(mode) 
            Else 
                vehicleestimate = vehicleestimate + 1 
            End If 
            i = i + 1 
        Loop 
        i = 1 
        minvehicles(mode) = Int(vehicleestimate * 2) 
        mode = mode + 1 
        vehicleestimate = 0 
    Loop 
End Sub 
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 This procedure handles the assignment of shipments to individual modes based 
upon their feasibility. DetFeas generates an array of modes, called FeasArray. Each 
shipment’s serial corresponds to its cheapest feasible mode, in FeasArray. The shipments 
are then assigned to the array corresponding to their cheapest feasible mode. 

Sub DeadlineArrayGenerator(shipmentarray() As Integer, NumShipArray As Integer, 
DeadlineArray() As Integer, DeadlineTracker() As Integer) 
    Dim n As Integer 
    Dim mode As Integer 
    Dim FeasArray() As Integer 
    ReDim DeadlineArray(1 To NumModes, 1 To NumShipArray) 
    ReDim DeadlineTracker(1 To NumModes) 
    ReDim FeasArray(1 To numshipments) 
    n = 1 
    DetFeas FeasArray() 
    Do While n <= NumShipArray 
        mode = FeasArray(shipmentarray(n)) 
        DeadlineTracker(mode) = DeadlineTracker(mode) + 1 
        DeadlineArray(mode, DeadlineTracker(mode)) = shipmentarray(n) 
        n = n + 1 
    Loop 
End Sub 
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 This procedure populates FeasArray so that FeasArray(Shipment Number) will 
return the cheapest feasible mode for that shipment. 

Sub DetFeas(FeasArray() As Integer) 
    Dim shsource As Variant 
    Dim shsink As Variant 
    Dim ShArrival As Variant 
    Dim ShDeadline As Variant 
    Dim vehiclespeeds As Variant 
    Dim found As Boolean 
    Dim n As Integer 
    Dim k As Integer 
    Dim i As Integer 
    ReDim FeasArray(1 To numshipments) 
    shsource = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2", 
Sheets("Shipments").Range("B2").End(xlDown))) 
    shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2", 
Sheets("Shipments").Range("C2").End(xlDown))) 
    ShArrival = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2", 
Sheets("Shipments").Range("E2").End(xlDown))) 
    ShDeadline = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2", 
Sheets("Shipments").Range("F2").End(xlDown))) 
    vehiclespeeds = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2", 
Sheets("Vehicles").Range("B2").End(xlDown))) 
    i = 1 
    Do While i <= NumModes 
        populateneededtime i, shsink 
        i = i + 1 
    Loop 
    n = 1 
    k = 1 
    Do While n <= numshipments 
        Do While k < NumModes And found = False 
            If SimpleNetwork(k)(shsource(n), shsink(n)) / vehiclespeeds(k) + 
shUnloadTime(k, n) <= ShDeadline(n) - ShArrival(n) + 1 Then 
                found = True 
                FeasArray(n) = k 
            End If 
            k = k + 1 
        Loop 
        If found = False Then 
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            FeasArray(n) = k 
        End If 
        found = False 
        k = 1 
        n = n + 1 
    Loop 
End Sub 
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 It is assumed that Dijkstra’s will only be run once, while the Heuristic Scheduler 
may be run many times. As a consequence, the simplification of the network outputs to 
Excel. This algorithm converts the output of the Dijkstra’s component into arrays, for the 
Heuristic Scheduler to use internally. 

Sub PopulateSimpleNetwork() 'This converts the simple networks generated by Dijkstras 
algorithm into arrays, for speed. 
    Dim i As Integer 
    Dim transfervariable() As Variant 
    ReDim SimpleNetwork(1 To NumModes) 
    i = 1 
    Do While i <= NumModes 
        With Sheets("Simplified Network " & i).Range("B2") 
            transfervariable = Range(.Offset(0, 0), .End(xlDown).End(xlToRight)) 
        End With 
        SimpleNetwork(i) = transfervariable() 
        i = i + 1 
    Loop 
End Sub 
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